Bài nghiên cứu này đã nêu rõ vai trò chuyển đổi của trí tuệ nhân tạo và học máy trong phát hiện gian lận, nhấn mạnh khả năng phân tích tập dữ liệu giao dịch khổng lồ, xác định các điểm bất thường và tăng cường bảo mật ngân hàng số... Việc trí tuệ nhân tạo và học máy được áp dụng rộng rãi sẽ phụ thuộc vào cách các tổ chức tài chính điều chỉnh chiến lược của mình để thích ứng hiệu quả hơn với các mô hình đang ngày càng được quản lý chặt chẽ hơn bởi các quy định. Sự thành công của trí tuệ nhân tạo và học máy trong phát hiện gian lận sẽ được quyết định bởi việc đổi mới công nghệ, chia sẻ thông tin tình báo về gian lận và các biện pháp quy định nhằm cân bằng giữa đạo đức trong việc sử dụng trí tuệ nhân tạo trong ngân hàng số.
Sự xuất hiện của bản sao số khách hàng đánh dấu bước chuyển đổi căn bản trong ngành Ngân hàng, từ mô hình quản lý khách hàng phản ứng sang chiến lược chủ động dựa trên dự đoán và tương tác cá nhân hóa sâu. Bằng cách xây dựng các mô hình ảo động, bản sao số khách hàng cho phép ngân hàng mô phỏng hành vi, dự báo nhu cầu và phân tích động lực đằng sau quyết định tài chính của từng cá nhân. Giá trị cốt lõi của bản sao số khách hàng nằm ở khả năng siêu cá nhân hóa dịch vụ, thúc đẩy lòng trung thành và tối ưu hóa giá trị vòng đời khách hàng, đồng thời nâng cao hiệu quả hoạt động, quản lý rủi ro và đổi mới sản phẩm.
Chuyển đổi số, nổi bật trong bối cảnh CMCN 4.0, đang thay đổi sâu sắc cách vận hành và cung cấp dịch vụ trong ngành ngân hàng, bao gồm cả ngân hàng trung ương. Bài viết làm rõ khái niệm, đặc điểm của chuyển đổi số trong lĩnh vực này, phân tích tác động đến hoạt động của các NHTW trên thế giới và đề xuất gợi ý cho Việt Nam.
Thẻ tín dụng ngày càng phổ biến khiến các ngân hàng thương mại đối mặt với rủi ro nợ xấu và kiểm soát chi tiêu. Bài viết phân tích kinh nghiệm quốc tế để rút ra bài học giúp NHTM Việt Nam xây dựng chính sách tín dụng an toàn và ứng dụng công nghệ kiểm soát rủi ro hiệu quả.