Xếp hạng tín dụng khách hàng cá nhân với khai phá dữ liệu, thuật toán C4.5

Nghiên cứu - Trao đổi
Khai phá dữ liệu (Data Mining - DM) là khái niệm rộng và có thể gây khó khăn cho các nhà nghiên cứu không chuyên sâu về công nghệ thông tin. Điều quan trọng là phải nắm được nguyên lý, khái niệm liên quan đến DM, từ đó, định hướng mục tiêu và ứng dụng DM trong từng lĩnh vực, đặc biệt là trong lĩnh vực tài chính, ngân hàng.
aa

Tóm tắt: Khai phá dữ liệu (Data Mining - DM) là khái niệm rộng và có thể gây khó khăn cho các nhà nghiên cứu không chuyên sâu về công nghệ thông tin. Điều quan trọng là phải nắm được nguyên lý, khái niệm liên quan đến DM, từ đó, định hướng mục tiêu và ứng dụng DM trong từng lĩnh vực, đặc biệt là trong lĩnh vực tài chính, ngân hàng. Bài viết này trình bày các khái niệm cơ bản về DM, ứng dụng của DM trong lĩnh vực tài chính, ngân hàng và phương pháp xếp hạng tín dụng khách hàng cá nhân trong ngân hàng dựa trên kỹ thuật cây quyết định C4.5.

Từ khóa: Học máy, DM, cây quyết định, khách hàng trung thành.

PERSONAL CUSTOMER CREDIT RATING WITH DATA MINING, C4.5-ALGORITHM

Abstract: Data Mining (DM) has so far been a broad concept and make difficulty for researchers who do not specialize in information technology. It is important to understand the principles and concepts of DM so that they can orient their goals and apply DM in each field, especially in banking and finance sector. This artical presents the basic concepts of DM, DM application in banking and finance sector, the solution of personal banking customer credit rating by C4.5 algorithm.

Keywords: Machine learning, DM, decision tree, loyal customer.

1. Tổng quan về xếp hạng tín dụng, DM và cây quyết định

1.1. Xếp hạng tín dụng

Xếp hạng tín dụng là việc đưa ra nhận định về mức độ tín nhiệm đối với trách nhiệm tài chính hoặc đánh giá mức độ rủi ro tín dụng phụ thuộc các yếu tố như năng lực đáp ứng cam kết tài chính, khả năng dễ bị vỡ nợ khi điều kiện kinh doanh thay đổi, ý thức và thiện chí trả nợ của người đi vay. Thang điểm xếp hạng tín dụng khách hàng có thể được minh họa trong Bảng 1.

Bảng 1: Điểm xếp hạng tín dụng khách hàng cá nhân

Nguồn: Ngân hàng Thương mại cổ phần Hàng Hải Việt Nam (MSB)


1.2. DM

DM là tập hợp các thuật toán nhằm chiết xuất những thông tin có ích từ kho dữ liệu khổng lồ. DM được định nghĩa như một quá trình phát hiện mẫu trong dữ liệu, quá trình này có thể là tự động hay bán tự động, song phần nhiều là bán tự động. Các mẫu được phát hiện mang lại cho người sử dụng một lợi thế nào đó, thường là lợi thế về kinh tế. Theo đó, DM giống một quá trình tìm ra và mô tả mẫu dữ liệu. Dữ liệu là một tập hợp các sự vật hay sự kiện, đầu ra của quá trình DM thường là những dự báo của các sự vật hay sự kiện mới. Nó được áp dụng trong các cơ sở dữ liệu quan hệ, giao dịch hay trong kho dữ liệu phi cấu trúc mà điển hình là World Wide Web… Như vậy, mục đích của DM là tìm ra mẫu hoặc mô hình đang tồn tại trong các cơ sở dữ liệu nhưng vẫn còn bị khuất bởi số lượng dữ liệu khổng lồ. Quy trình DM gồm 6 giai đoạn:

Giai đoạn 1: Gom cụm dữ liệu (Gathering). Dữ liệu được gom từ trong một cơ sở dữ liệu, kho dữ liệu hay thanh chứa dữ liệu từ những nguồn cung ứng Web.

Giai đoạn 2: Trích lọc dữ liệu (Selection): Dữ liệu được lựa chọn và phân chia theo một số tiêu chuẩn nào đó, ví dụ chọn tất cả những người tuổi đời từ 25 - 35 và có trình độ đại học.

Giai đoạn 3: Làm sạch tiền xử lý và chuẩn bị trước các dữ liệu (Cleansing pre-processing, preparation): Đây là giai đoạn hay bị sao nhãng, nhưng thực tế nó là một bước rất quan trọng trong quá trình DM. Một số lỗi thường mắc phải trong giai đoạn này là dữ liệu không đầy đủ hoặc không thống nhất, thiếu chặt chẽ. Vì vậy dữ liệu thường chứa các giá trị vô nghĩa và không có khả năng kết nối. Ví dụ, sinh viên có tuổi là 200, đây là dữ liệu dư thừa, không có giá trị.

Giai đoạn 4: Chuyển đổi dữ liệu (Transformation): Dữ liệu được tổ chức để phù hợp hơn với mục đích của DM.

Giai đoạn 5: Phát hiện và trích mẫu dữ liệu (Pattern extraction and discovery): Là giai đoạn tư duy trong DM. Ở giai đoạn này, nhiều thuật toán khác nhau được sử dụng để trích ra các mẫu từ dữ liệu. Thuật toán thường dùng để trích mẫu dữ liệu là thuật toán phân loại dữ liệu, kết hợp dữ liệu, mô hình hóa dữ liệu tuần tự.

Giai đoạn 6: Đánh giá kết quả mẫu (Evaluation of result): Ở giai đoạn này, các mẫu dữ liệu được chiết xuất bởi phần mềm DM nhưng không phải mẫu dữ liệu nào cũng hữu ích, đôi khi nó còn bị sai lệch. Vì vậy cần phải đưa ra tiêu chuẩn đánh giá độ ưu tiên cho các mẫu dữ liệu để rút ra kết quả cần thiết.

1.3. Cây quyết định

Trong lĩnh vực học máy, cây quyết định là một kiểu mô hình dự báo, nghĩa là một ánh xạ từ các quan sát về một sự vật, hiện tượng tới kết luận về giá trị mục tiêu của sự vật, hiện tượng. Mỗi nút trong tương ứng với một biến; đường nối giữa nó với nút con của nó thể hiện giá trị cụ thể cho biến đó. Mỗi nút lá đại diện cho giá trị dự đoán của biến mục tiêu, cho trước giá trị dự đoán của các biến được biểu diễn bởi đường đi từ nút gốc tới nút lá đó. Kỹ thuật học máy dùng trong cây quyết định được gọi là học bằng cây quyết định, hay chỉ gọi với cái tên ngắn gọn là cây quyết định.

Cây quyết định là một phương tiện có tính mô tả dành cho việc tính toán các xác suất có điều kiện. Nó được mô tả là sự kết hợp của các kỹ thuật toán học và tính toán nhằm hỗ trợ việc mô tả, phân loại, tổng quát hóa một tập dữ liệu cho trước. Cây quyết định là sơ đồ phát triển có cấu trúc dạng cây, ví dụ như trong Hình 1:

Hình 1: Sơ đồ cây quyết định

Nguồn: Tác giả tổng hợp


Trong đó:

- Gốc: Là nút trên cùng của cây.

- Nút trong: Biểu diễn một thuộc tính đơn.

- Nhánh: Là một đường đi trên cây, bắt đầu từ nút gốc đến nút lá.

- Nút lá: Biểu diễn tập giá trị cuối cùng của một nhánh.

- Độ cao, mức: Trong một cây, độ cao của đỉnh a là độ dài của đường đi dài nhất từ a đến một lá. Độ cao của gốc được gọi là độ cao của cây, mức của đỉnh a là độ dài của đường đi từ gốc đến a.

Cây quyết định có cấu trúc đơn giản, dễ hiểu và được xây dựng khá nhanh, từ cây quyết định có thể dễ dàng rút ra các luật (series of rules). Ví dụ, từ cây quyết định trong Hình 1, có thể rút ra được các luật sau:

IF (Age <= 35) AND (Salary <= 40) THEN class = bad

IF (Age <= 35) AND (Salary > 40) THEN class = good

IF (Age > 35) AND (Salary <= 50) THEN class = bad

IF (Age > 35) AND (Salary > 50) THEN class = good

Cách thức hoạt động của thuật toán cây quyết định thường thông qua thuật toán ID3 của Ross Quinlan. Đây là thuật toán xây dựng cây quyết định theo cách từ trên xuống. Bất kỳ thuộc tính nào cũng có thể phân vùng tập hợp các đối tượng thành những tập con tách rời với một giá trị chung. ID3 chọn một thuộc tính để kiểm tra tại nút hiện tại của cây và phân vùng tập hợp các đối tượng, thuật toán khi đó xây dựng theo cách đệ quy một cây con cho từng phân vùng. Việc này tiếp tục cho đến khi tập đối tượng của phân vùng đều nằm trong cùng một lớp, lớp đó trở thành nút lá của cây.

Thuật toán C4.5 của Ross Quinlan là một thuật toán cải tiến so với thuật toán ID3 do ID3 làm việc không hiệu quả với các thuộc tính có nhiều giá trị. Thuật toán C4.5 được sử dụng rộng rãi nhất trong thực tế cho đến nay. C4.5 là thuật toán phân lớp dữ liệu dựa trên cây quyết định rất hiệu quả và phổ biến trong những ứng dụng khai phá cơ sở dữ liệu có kích thước nhỏ. Kỹ thuật này cho phép giảm bớt kích thước tập luật và đơn giản hóa các luật mà độ chính xác so với nhánh tương ứng cây quyết định là tương đương. Công thức sử dụng trong thuật toán như sau:


Trong đó:

pi: Xác suất để 1 phần tử bất kỳ trong D thuộc lớp Ci;

m: Số lớp;

InfoA(D): Lượng thông tin cần để phân loại một phần tử trong D dựa trên thuộc tính A. Thuộc tính A dùng phân tách D thành v phân hoạch (D1, D2... Dv). Mỗi phân hoạch Dj gồm |Dj| phần tử trong D. Lượng thông tin này sẽ cho biết mức độ trùng lặp giữa các phân hoạch, nghĩa là một phân hoạch chứa các phần tử từ một lớp hay nhiều lớp khác nhau.

Độ đo Information Gain: Là độ sai biệt giữa trị thông tin Info(D) ban đầu (trước phân hoạch) với trị thông tin mới InfoA(D) (sau phân hoạch với A).

Gain(A) = Info(D) - InfoA(D) Information Gain được sử dụng làm tiêu chuẩn để lựa chọn thuộc tính khi phân lớp. Thuộc tính được chọn là thuộc tính có Gain đạt giá trị lớn nhất.

Để giải quyết vấn đề một thuộc tính được dùng tạo ra rất nhiều phân hoạch (thậm chí mỗi phân hoạch chỉ gồm 1 phân tử), thuật toán C4.5 đã đưa ra các đại lượng GainRatio và SplitInfo, chúng được xác định theo công thức:

Giá trị SplitInfo là đại lượng đánh giá thông tin tiềm năng thu thập được khi phân chia tập D thành v tập con. GainRatio là tiêu chuẩn để đánh giá việc lựa chọn thuộc tính phân loại. Thuộc tính được lựa chọn là thuộc tính có GainRatio đạt giá trị lớn nhất.

Để đánh giá hiệu suất của một cây quyết định, người ta thường sử dụng một tập ví dụ tách rời, tập này khác với tập dữ liệu huấn luyện để đánh giá khả năng phân loại của cây trên các ví dụ của tập này. Tập dữ liệu này gọi là tập kiểm tra. Thông thường, tập dữ liệu sẵn có sẽ được chia thành hai tập: Tập rèn luyện thường chiếm 2/3 số ví dụ và tập kiểm tra chiếm 1/3. Ma trận dưới đây được sử dụng để đánh giá hiệu quả của việc phân lớp với cây quyết định nói chung, C4.5 nói riêng. (Bảng 2)

Bảng 2: Ma trận xác định độ chính xác

của bộ phân lớp

Nguồn: Tổng hợp của tác giả


Trong đó:

- TP: Là số mẫu thuộc lớp C được phân lớp đúng.

- TN: Là số mẫu không thuộc lớp C được phân lớp đúng.

- FP: Là số mẫu thuộc lớp C mà bộ phân lớp sai.

- FN: Là số mẫu không thuộc lớp C mà bộ phân lớp sai.

Từ đó, các độ đo đánh giá quá trình phân lớp được tính như sau:


2. Giải pháp chấm điểm tín dụng dựa trên kỹ thuật cây quyết định C4.5

Nguyên lý hoạt động và các độ đo quan trọng của cây quyết định C4.5 đã được giới thiệu trong các phần trước, trong phần tiếp theo, bài viết sẽ trình bày về việc ứng dụng cây quyết định này để xây dựng mô hình dự báo một khách hàng có được vay vốn hay không dựa trên điểm tín dụng của họ với ví dụ minh họa là bộ dữ liệu khách hàng từ MSB. Một tập cơ sở dữ liệu ban đầu của khách hàng liên quan đến khoản vay với các giá trị dữ liệu đã biết về thuộc tính như: Tuổi, trình độ học vấn, tình trạng hôn nhân, số người phụ thuộc, tính chất công việc, thu nhập hằng tháng.

Đầu vào: Bộ dữ liệu về thông tin khách hàng.

Đầu ra: Các luật về xếp hạng tín dụng khách hàng cá nhân tại ngân hàng.

Công cụ sử dụng: Phần mềm Weka.

Dữ liệu được sử dụng để xây dựng bài toán là một tập hợp các thông tin về khách hàng cá nhân xin cấp tín dụng tại MSB. Dữ liệu này bao gồm 866 bản ghi, được lưu trữ dưới dạng file excel và được chuyển thành file csv như Bảng 3.

Bảng 3: Dữ liệu thông tin khách hàng xin cấp tín dụng tại MSB

Nguồn: Tác giả tổng hợp từ bộ dữ liệu


Bộ dữ liệu gồm có 17 thuộc tính khác nhau, mỗi thuộc tính đều có giá trị hữu hạn. Tên các thuộc tính và tập giá trị của nó được trình bày trong Bảng 4.


Bảng 4: Các thuộc tính và tập giá trị của nó

Nguồn: Tác giả tổng hợp từ bộ dữ liệu


- Sản phẩm, dịch vụ sử dụng:

Loại 1: Tiền gửi và các dịch vụ khác.

Loại 2: Chỉ sử dụng dịch vụ thanh toán.

Loại 3: Không sử dụng.

- Tình hình trả nợ gốc và lãi:

Loại 1: Luôn trả nợ đúng hạn.

Loại 2: Đã bị gia hạn nợ, hiện trả nợ tốt.

Loại 3: Đã có nợ quá hạn hoặc khách hàng mới.

Loại 4: Đã có nợ quá hạn, khách hàng trả nợ không ổn định.

Loại 5: Hiện đang có nợ quá hạn.

- Uy tín giao dịch:

Loại 1: Có giao dịch vào, ra đều đặn hoặc trả nợ đầy đủ.

Loại 2: Khách hàng mới, chưa cấp hạn mức.

Loại 3: Từ 2 đến 3 tháng không có giao dịch tiền vào và (hoặc) phát sinh nợ loại 2.

Loại 4: Trên 3 tháng không có giao dịch tiền vào và (hoặc) phát sinh nợ loại 3, 4, 5.

Trong quá trình DM, công việc tiền xử lý dữ liệu trước khi đưa vào mô hình là rất cần thiết. Bước này cho biết dữ liệu qua thu thập ban đầu có thể được áp dụng thích hợp với các mô hình DM cụ thể. Các công việc bao gồm:

- Filtering Attributes: Chọn các thuộc tính phù hợp với mô hình.

- Filtering Sample: Lọc các mẫu dữ liệu cho mô hình.

- Transformation: Chuyển đổi kiểu dữ liệu cho phù hợp.

- Discretization: Rời rạc hóa dữ liệu.

Cụ thể đối với thuộc tính được mã hóa mô tả tại Bảng 5, 6, 7, 8, 9.

Bảng 5: Gán nhãn cho thuộc tính “tuổi”

Nguồn: Tác giả tổng hợp từ bộ dữ liệu

Bảng 6: Gán nhãn cho thuộc tính

“số người phụ thuộc”

Nguồn: Tác giả tổng hợp từ bộ dữ liệu

Bảng 7: Gán nhãn cho thuộc tính

“thời gian công tác”

Nguồn: Tác giả tổng hợp từ bộ dữ liệu

Bảng 8: Gán nhãn cho thuộc tính

“thu nhập hằng tháng”

Nguồn: Tác giả tổng hợp từ bộ dữ liệu

Bảng 9: Gán nhãn cho thuộc tính

“tỉ lệ số tiền phải trả trên thu nhập”

Nguồn: Tác giả tổng hợp từ bộ dữ liệu


3. Thực nghiệm

Sau khi đã thực hiện qua bước tiền xử lý dữ liệu, tác giả tiến hành phân loại dữ liệu bằng thuật toán C4.5. Trước khi tiến hành phân loại, tác giả chọn chế độ kiểm thử để xây dựng tập kiểm thử và tập huấn luyện. Weka hỗ trợ 4 chế độ kiểm thử:

- Use training set: Sử dụng chính tập training data để tiến hành kiểm thử.

- Supplied test set: Sử dụng tập dữ liệu khác để tiến hành kiểm thử.

- Cross-validation: Chia dữ liệu thành nhiều phần để thực hiện thành nhiều lần đánh giá kết quả.

- Percentage split: Chia dữ liệu thành hai phần theo tỉ lệ %, một phần dùng để xây dựng mô hình, một phần dành cho kiểm thử.

Sử dụng chế độ kiểm thử Use training set thu được kết quả như Hình 2.

Hình 2: Kết quả thuật toán dưới dạng Text


Nguồn: Tác giả tổng hợp từ phần mềm Weka

Kết quả thu được sau quá trình huấn luyện là tập các luật thu được dạng mô hình cây như sau:

TGCongtac = 2

| UytinGD = Loai 1

| | Songuoiphuthuoc = 1

| | | Trinhdohocvan = TrenDH: AA (1.0)

| | | Trinhdohocvan = Daihoc

| | | | SPDVsudung = Loai 1: AAA (3.0)

| | | | SPDVsudung = Loai 2: AA (2.0)

| | | Trinhdohocvan = Trunghoc: AA (0.0)

| | | Trinhdohocvan = Duoitrunghoc: BBB (2.0)

| | | Trinhdohocvan = Caodang: AA (2.0)

| | Songuoiphuthuoc = 2: AA (11.0)

| | Songuoiphuthuoc = 3: BBB (1.0)

| | Songuoiphuthuoc = 4: AA (0.0)

| | Songuoiphuthuoc = 5: A (1.0)


Căn cứ vào các luật được sinh ra như trên, chúng ta có thể diễn giải các luật đó cụ thể hơn từ cây quyết định:

- Luật 1: IF (TGCongtac = 1) AND (UytinGD = Loai 1) AND (SPDVsudung = Loai 1) AND (TTNhao = Chusohuu) THEN (XHTD = AAA).

- Luật 2: IF (TGCongtac = 1) AND (UytinGD = Loai 1) AND (SPDVsudung = Loai 1) AND (TTNhao = Thue) THEN (XHTD = AA).

- Luật 3: IF (TGCongtac = 1) AND (UytinGD = Loai 1) AND (SPDVsudung = Loai 2) AND (Songuoiphuthuoc = 1) AND (Tuoi = 1) THEN (XHTD = AA).

- Luật 4: IF (TGCongtac = 1) AND (UytinGD = Loai 1) AND (SPDVsudung = Loai 2) AND (Songuoiphuthuoc = 1) AND (Tuoi = 2) THEN (XHTD = BBB).

- Luật 5: IF (TGCongtac = 1) AND (UytinGD = Loai 1) AND (SPDVsudung = Loai 2) AND (Songuoiphuthuoc = 1) AND (Tuoi = 3) AND (Trinhdohocvan = Daihoc THEN (XHTD = AA).

- Luật 6: IF (TGCongtac = 2) AND (UytinGD = Loai 1) AND (Songuoiphuthuoc = 1) AND (Trinhdohocvan = TrenDH) THEN (XHTD = AA).

- Luật 7: IF (TGCongtac = 2) AND (UytinGD = Loai 1) AND (Songuoiphuthuoc = 1) AND (Trinhdohocvan = Daihoc) AND (SPDVsudung = Loai 1) THEN (XHTD = AAA).

- Luật 8: IF (TGCongtac = 2) AND (UytinGD = Loai 4) AND (SPDVsudung = Loai 1) AND (Oto = Khong) AND (TSThechap = Khong) THEN (XHTD = CCC).

Bài toán xây dựng cây quyết định xếp hạng tín dụng được thử nghiệm trên phần mềm Weka với bộ số liệu của MSB thu được kết quả tương đối tốt. Dựa vào kết quả thực nghiệm, thu được các thông tin như Hình 3.

Hình 3: Kết quả sau khi thực hiện trên phần mềm Weka

Nguồn: Tác giả tổng hợp từ phần mềm Weka


Từ Hình 3, ta thấy lớp “AAA”có độ chính xác cao nhất với tỉ lệ các mẫu được phân lớp đúng đạt 97,9%, chỉ có 0,4% mẫu bị phân lớp sai. Tỉ lệ các mẫu thuộc lớp “AAA” được phân loại đúng lần lượt chiếm 96,8%, 97,9% trên tổng số các mẫu được phân loại vào lớp "AAA" và trên tổng số các mẫu có giá trị thực thuộc lớp này. Giá trị F-Measure và ROC Area càng tiến gần về 1 có nghĩa mô hình càng tốt. Tương tự với các lớp còn lại.

Với mô hình cây quyết định, kết quả được mô phỏng phân loại một cách trực quan, dễ hiểu đối với người sử dụng, có thể rút ra các luật một cách nhanh chóng, dễ dàng dự đoán trước khả năng của khách hàng, từ đó đưa ra những quyết định phù hợp hơn.

4. Kết luận và hướng phát triển

Các ngân hàng thương mại thường xuyên phải đưa ra các quyết định liên quan đến quá trình cho vay của mình với mục tiêu giảm thiểu tối đa rủi ro cho vay. Với dự đoán đã thu được, nhà quản trị ngân hàng có thể sẽ dễ dàng ra quyết định tùy vào tình huống thực tế. Tuy nhiên, với bộ dữ liệu thu thập được có kích thước tương đối nhỏ, kết quả phân loại khi sử dụng cây quyết định đối với các trường hợp khác có thể chưa cao. Các luật cung cấp thêm thông tin, gợi ý trong quá trình xếp hạng tín dụng nhưng không dựa vào hoàn toàn. Tùy vào từng trường hợp, từng khách hàng cụ thể mà ngân hàng có thể áp dụng một cách linh hoạt. Như vậy, với những kết quả đã rút ra được, có thể khẳng định rằng, phương pháp cây quyết định áp dụng trong xếp hạng tín dụng là một hướng tiếp cận tiềm năng. Do đó, nhóm tác giả đề xuất một số vấn đề cần nghiên cứu, phát triển để các ngân hàng có thể áp dụng mô hình cây quyết định như sau:

Thứ nhất, cần bổ sung thêm dữ liệu cho tập huấn luyện để mô hình cây quyết định có độ tin cậy cao hơn và hoạt động hiệu quả hơn. Đặc biệt là việc tổng hợp các nguồn dữ liệu từ các ngân hàng thương mại khác nhau.

Thứ hai, tiếp tục phát triển, hoàn thiện theo hướng DM trở thành phần mềm trong tín dụng tiêu dùng nhằm hỗ trợ cán bộ tín dụng đưa ra quyết định cho khách hàng vay và quản trị rủi ro tín dụng hiệu quả.

Thứ ba, tiếp tục nghiên cứu các thuật toán về DM và học máy nhằm áp dụng nhiều hơn nữa các kỹ thuật này trong lĩnh vực tài chính, ngân hàng.

Thứ tư, đẩy mạnh hợp tác nghiên cứu giữa trường đại học với ngân hàng thương mại để ứng dụng các nghiên cứu từ trường đại học vào thực tế, đồng thời, sử dụng được nguồn dữ liệu từ ngân hàng thương mại trong việc nghiên cứu.

Tài liệu tham khảo:

1. Bhatia, S., Sharma, P., Burman, R., Hazari, S., & Hande, R, (2017), Credit scoring using machine learning techniques., International Journal of Computer Applications, 161(11), pages 1-4.

2. Ian H. Witten, Eibe Frank, and Marker Hall, (2011), “Data Mining- Practical Machine Learning Tools and Techniques”, Morgan Kaufmann.

3. Leo, M., Sharma, S., & Maddulety, K., (2019), Machine learning in banking risk managemen, t: A literature review. Risks, 7(1), 29.

4. M Madhavi, M V R Srivatsava, 92023), “Fraud Detection in Banking”, International Journal of Engineering and Advanced Technology, Volume 3, Issue 1, pages 322-358.

5. M. Al-Shabi, 92019), Credit card fraud detection using autoencoder model in unbalanced datasets, J. Adv. Math. Comput. Sci, 33, pages 1-16.

6. Meenakshi, D., & Janani, (2019), Credit Card Fraud Detection Using Random Forest., International Research Journal of Engineering and Technology (IRJET), 6.

7. S. Ghosh, DL Reilly, (2004), Credit card fraud detection with a neural-network, Proceedings of the Twenty-Seventh Hawaii International Conference on. Vol. 3. IEEE, 1994.


ThS. Nguyễn Dương Hùng; ThS. Ngô Thùy Linh

Khoa Công nghệ thông tin và Kinh tế số, Học viện Ngân hàng


https://tapchinganhang.gov.vn

Tin bài khác

Xây dựng nhân lực quốc gia trong kỷ nguyên số: Từ thách thức đến bứt phá (Kỳ 4)

Xây dựng nhân lực quốc gia trong kỷ nguyên số: Từ thách thức đến bứt phá (Kỳ 4)

Từ việc xác định đào tạo là khâu đột phá chiến lược, lồng ghép vào quy hoạch phát triển từng ngành, từng địa phương đến việc xây dựng mô hình tổ chức Đảng gắn với nhiệm vụ phát triển nhân lực; từ công tác giám sát chặt chẽ, chống bệnh hình thức đến việc kết hợp hài hòa giữa giáo dục đạo đức, tư tưởng và đào tạo chuyên môn - tất cả tạo nên một cơ chế đồng bộ, hướng tới mục tiêu chung: Xây dựng con người Việt Nam toàn diện cho kỷ nguyên số!
Vận dụng quan điểm khách quan của chủ nghĩa duy vật biện chứng trong công tác xây dựng văn bản quy phạm pháp luật tại Ngân hàng Nhà nước Việt Nam

Vận dụng quan điểm khách quan của chủ nghĩa duy vật biện chứng trong công tác xây dựng văn bản quy phạm pháp luật tại Ngân hàng Nhà nước Việt Nam

Quan điểm khách quan trong triết học Mác - Lênin không chỉ là yêu cầu nhận thức đúng về thế giới hiện thực, mà còn là nguyên tắc phương pháp luận định hướng hành động thực tiễn. Vận dụng quan điểm này trong công tác xây dựng văn bản quy phạm pháp luật ngân hàng giúp bảo đảm cho các chính sách, quy định pháp luật phản ánh trung thực thực tế khách quan, phù hợp với quy luật vận động của nền kinh tế thị trường định hướng xã hội chủ nghĩa, đồng thời nâng cao tính khoa học, tính khả thi và tính ổn định của hệ thống pháp luật ngân hàng.
Xây dựng nhân lực quốc gia trong kỷ nguyên số: Từ thách thức đến bứt phá (Kỳ 3)

Xây dựng nhân lực quốc gia trong kỷ nguyên số: Từ thách thức đến bứt phá (Kỳ 3)

Đã đến lúc chúng ta phải chuyển mình mạnh mẽ trong tư duy về giáo dục và đào tạo: Từ việc coi đào tạo chỉ là nhiệm vụ riêng của ngành giáo dục, cần nhìn nhận đây là một chiến lược quốc gia, mang tầm ảnh hưởng tới mọi lĩnh vực phát triển đất nước. Giáo dục không thể dừng lại ở việc truyền thụ kiến thức, mà phải hướng tới phát triển năng lực toàn diện, khơi dậy tinh thần sáng tạo và bản lĩnh hội nhập của người học. Phương pháp giảng dạy cũng phải được đổi mới căn bản - từ lối truyền đạt thụ động sang mô hình đào tạo gắn chặt với thực tiễn đời sống, với nhu cầu phát triển kinh tế - xã hội và tiến trình chuyển đổi số quốc gia.
Xây dựng nhân lực quốc gia trong kỷ nguyên số: Từ thách thức đến bứt phá (Kỳ 2)

Xây dựng nhân lực quốc gia trong kỷ nguyên số: Từ thách thức đến bứt phá (Kỳ 2)

Việt Nam đang đứng trước một “cơn khát kép” về nguồn nhân lực: Vừa khát về số lượng, vừa khát về chất lượng. Điểm sáng và khoảng trống đan xen tạo nên một bức tranh nhiều gam màu. Nếu không có giải pháp mạnh mẽ, đồng bộ, nguy cơ tụt hậu so với khu vực là hiện hữu.
Xây dựng nhân lực quốc gia trong kỷ nguyên số: Từ thách thức đến bứt phá

Xây dựng nhân lực quốc gia trong kỷ nguyên số: Từ thách thức đến bứt phá

“Kỷ nguyên vươn mình” của dân tộc không chỉ là khẩu hiệu mà là trách nhiệm chung của cả hệ thống chính trị, cộng đồng doanh nghiệp và mỗi người dân. Để biến khát vọng thành hiện thực, Việt Nam cần thấm nhuần sâu sắc quan điểm “con người là trung tâm, là chủ thể và là động lực của phát triển”; coi đầu tư cho giáo dục, đào tạo và phát triển nguồn nhân lực là đầu tư cho tương lai; đồng thời đẩy mạnh hoàn thiện thể chế, cải cách giáo dục, phát triển hạ tầng số, xây dựng văn hóa học tập suốt đời, khuyến khích doanh nghiệp đầu tư đào tạo, thu hút và trọng dụng nhân tài.
Bảo vệ chính trị nội bộ ở Agribank: Kiên định tư tưởng của Đảng trong giai đoạn tinh gọn bộ máy

Bảo vệ chính trị nội bộ ở Agribank: Kiên định tư tưởng của Đảng trong giai đoạn tinh gọn bộ máy

Bài viết nhấn mạnh vai trò then chốt của nền tảng tư tưởng của Đảng trong bảo vệ chính trị nội bộ tại Ngân hàng Nông nghiệp và Phát triển nông thôn Việt Nam (Agribank) trong giai đoạn tinh gọn bộ máy. Với thông điệp “tinh gọn bộ máy nhưng không tinh giảm bản lĩnh chính trị”, Agribank từng bước nâng cao hiệu quả quản trị và giữ vững niềm tin với Nhân dân.
Từ bài viết “Không để một khe hở” đến vận dụng tư tưởng Hồ Chí Minh trong phòng, chống tham nhũng hiện nay

Từ bài viết “Không để một khe hở” đến vận dụng tư tưởng Hồ Chí Minh trong phòng, chống tham nhũng hiện nay

Ngay từ khi nước Việt Nam Dân chủ Cộng hòa ra đời, Chủ tịch Hồ Chí Minh đã cảnh báo về nguy cơ tham ô, lãng phí trong bộ máy Nhà nước, coi đó là “giặc nội xâm” nguy hại không kém giặc ngoại xâm và các hủ tục lạc hậu. Qua nhiều bài nói, bài viết, Người phân tích tác hại và đề xuất biện pháp đấu tranh với tệ nạn này. Bài viết “Không để một khe hở” là một minh chứng cụ thể, vẫn còn nguyên giá trị trong công tác phòng, chống tham nhũng hiện nay.
Nhân tố ảnh hưởng đến huy động nguồn lực đầu tư phát triển mô hình du lịch nông nghiệp: Nghiên cứu vùng Duyên hải Nam Trung Bộ của Việt Nam

Nhân tố ảnh hưởng đến huy động nguồn lực đầu tư phát triển mô hình du lịch nông nghiệp: Nghiên cứu vùng Duyên hải Nam Trung Bộ của Việt Nam

Du lịch nông nghiệp có nhiều tác động tích cực đối với phát triển kinh tế - xã hội ở các địa phương, đặc biệt là khu vực nông thôn và các tỉnh đang trong tiến trình công nghiệp hóa, hiện đại hóa. Nghiên cứu này sẽ phân tích các nhân tố ảnh hưởng đến khả năng huy động nguồn lực đầu tư cho phát triển mô hình du lịch nông nghiệp tại vùng Duyên hải Nam Trung Bộ và đề xuất một số kiến nghị phù hợp.
Xem thêm
Ngân hàng Nhà nước Việt Nam hoàn thiện khung giám sát rủi ro hệ thống để tăng cường ổn định tài chính - tiền tệ quốc gia

Ngân hàng Nhà nước Việt Nam hoàn thiện khung giám sát rủi ro hệ thống để tăng cường ổn định tài chính - tiền tệ quốc gia

Dự thảo Thông tư quy định trình tự, thủ tục nhận diện, đánh giá, phòng ngừa và hạn chế rủi ro hệ thống trong lĩnh vực tiền tệ, ngân hàng, tài chính đánh dấu một cột mốc quan trọng trong tiến trình hiện đại hóa giám sát tài chính tại Việt Nam. Nếu được triển khai một cách đồng bộ, gắn kết với các công cụ chính sách vĩ mô và cơ chế phối hợp liên ngành chặt chẽ, Thông tư sẽ góp phần nâng cao khả năng chống chịu của hệ thống ngân hàng, củng cố niềm tin thị trường, đồng thời tạo dựng nền tảng ổn định cho tăng trưởng kinh tế bền vững.
Song đề chính sách trong thị trường bất động sản - Ổn định tín dụng và công bằng xã hội

Song đề chính sách trong thị trường bất động sản - Ổn định tín dụng và công bằng xã hội

Khi tín dụng bất động sản được siết chặt nhằm hạn chế đầu cơ và kiểm soát rủi ro hệ thống, sẽ làm hạ nhiệt rõ rệt thị trường nhà ở. Tuy nhiên, thay vì làm giá nhà giảm mạnh, chính sách này lại kéo theo sự sụt giảm thanh khoản, đình trệ các dự án và nghịch lý giá nhà vẫn neo ở mức cao. Đây là biểu hiện tiêu biểu của một song đề chính sách trong quản lý kinh tế thị trường...
Giảm tỉ lệ dự trữ bắt buộc nhằm hỗ trợ tái cơ cấu các tổ chức tín dụng và tăng cường sự ổn định của hệ thống ngân hàng

Giảm tỉ lệ dự trữ bắt buộc nhằm hỗ trợ tái cơ cấu các tổ chức tín dụng và tăng cường sự ổn định của hệ thống ngân hàng

Thông tư số 23/2025/TT-NHNN là bước điều chỉnh quan trọng trong quản lý dự trữ bắt buộc, với tác động đa chiều đến tổ chức tín dụng và toàn bộ hệ thống ngân hàng. Chính sách này không chỉ giải phóng nguồn lực hỗ trợ tái cơ cấu các ngân hàng yếu, kém, mà còn tăng cường kỷ luật thị trường, nâng cao hiệu quả điều hành chính sách tiền tệ và củng cố niềm tin của công chúng.
Thu giữ tài sản bảo đảm là “nhà ở duy nhất”: Ranh giới tự trợ giúp theo Luật Các Tổ chức tín dụng và cưỡng chế tư pháp theo Luật Thi hành án dân sự

Thu giữ tài sản bảo đảm là “nhà ở duy nhất”: Ranh giới tự trợ giúp theo Luật Các Tổ chức tín dụng và cưỡng chế tư pháp theo Luật Thi hành án dân sự

Việc luật hóa quyền thu giữ tài sản bảo đảm là "nhà ở duy nhất" đang đặt ra nhiều thách thức về mặt pháp lý, đặc biệt trong việc xác định ranh giới giữa cơ chế tự trợ giúp của tổ chức tín dụng và cưỡng chế tư pháp nhằm bảo đảm vừa kỷ luật tín dụng, vừa quyền cư trú tối thiểu của người dân.
Phát triển nền kinh tế tri thức Việt Nam trong kỷ nguyên mới

Phát triển nền kinh tế tri thức Việt Nam trong kỷ nguyên mới

Định hướng phát triển nền kinh tế tri thức đã và đang được thể hiện rõ nét trong nhiều nghị quyết, bộ luật của Đảng, Nhà nước cũng như các chiến lược, quyết định của Chính phủ, qua đó đặt nền móng cho việc đưa tri thức trở thành nguồn lực sản xuất trực tiếp, tạo động lực tăng trưởng mới cho đất nước.
Nghiên cứu quy định về thư tín dụng trong Bộ luật Thương mại Thống nhất Hoa Kỳ

Nghiên cứu quy định về thư tín dụng trong Bộ luật Thương mại Thống nhất Hoa Kỳ

Trong bối cảnh hội nhập pháp lý quốc tế ngày càng sâu rộng và yêu cầu chuẩn hóa các chuẩn mực nghiệp vụ ngân hàng theo thông lệ quốc tế, việc ban hành Thông tư số 21/2024/TT-NHNN đã thể hiện nỗ lực đáng ghi nhận của NHNN trong việc xây dựng hành lang pháp lý tương đối hoàn chỉnh cho nghiệp vụ thanh toán quốc tế bằng thư tín dụng.
Các nhân tố ảnh hưởng đến ý định sử dụng dịch vụ ngân hàng điện tử: Nghiên cứu tại Ngân hàng Ngoại thương Lào

Các nhân tố ảnh hưởng đến ý định sử dụng dịch vụ ngân hàng điện tử: Nghiên cứu tại Ngân hàng Ngoại thương Lào

Phần lớn các nghiên cứu trước đây về chấp nhận và phát triển ngân hàng điện tử được thực hiện tại các quốc gia phát triển hoặc có nền tảng hạ tầng số vững chắc. Trong khi đó, tại một quốc gia đang phát triển như Cộng hòa Dân chủ Nhân dân (CHDCND) Lào, với đặc thù văn hóa tập thể, trình độ công nghệ và điều kiện kinh tế - xã hội riêng biệt, các yếu tố then chốt có thể khác biệt đáng kể. Do đó, nghiên cứu này nhằm lấp đầy khoảng trống trên bằng cách kiểm định một mô hình nghiên cứu tích hợp, kế thừa các yếu tố truyền thống và bổ sung các biến số đặc thù phù hợp với bối cảnh của CHDCND Lào.
Quản lý rủi ro tài sản số tại các ngân hàng: Kinh nghiệm từ các thị trường phát triển và bài học cho Việt Nam

Quản lý rủi ro tài sản số tại các ngân hàng: Kinh nghiệm từ các thị trường phát triển và bài học cho Việt Nam

Tài sản số đang tái định hình hệ thống tài chính toàn cầu với tốc độ nhanh chóng, đặt ra thách thức lớn trong việc quản lý rủi ro khi sử dụng chúng làm tài sản bảo đảm. Điều này đòi hỏi các cơ quan quản lý và các tổ chức tài chính phải xây dựng khung pháp lý minh bạch, cơ chế định giá đáng tin cậy, cùng hệ thống giám sát hiệu quả nhằm bảo đảm an toàn, hạn chế rủi ro và duy trì ổn định tài chính.
Hợp tác thương mại giữa Ấn Độ và Đông Nam Á: Thực trạng, đánh giá và gợi ý cho Việt Nam

Hợp tác thương mại giữa Ấn Độ và Đông Nam Á: Thực trạng, đánh giá và gợi ý cho Việt Nam

Trong bối cảnh kinh tế toàn cầu biến động, việc đánh giá thực trạng, xu hướng và động lực phát triển quan hệ thương mại Ấn Độ - ASEAN trở nên cấp thiết nhằm xác định cơ hội hợp tác mới, đặc biệt là đối với các nước trung gian như Việt Nam.
Thông lệ quốc tế và giải pháp nâng cao chất lượng thông tin đầu vào phục vụ công tác giám sát ngân hàng tại Ngân hàng Nhà nước Việt Nam

Thông lệ quốc tế và giải pháp nâng cao chất lượng thông tin đầu vào phục vụ công tác giám sát ngân hàng tại Ngân hàng Nhà nước Việt Nam

Việc nâng cao chất lượng thông tin đầu vào thông qua ứng dụng công nghệ thông tin là một quá trình liên tục và cần thiết đối với công tác giám sát ngân hàng tại Ngân hàng Nhà nước Việt Nam. Các giải pháp ngắn hạn như hoàn thiện hệ thống báo cáo và thiết lập hàng trăm công thức kiểm tra tự động trên hệ thống công nghệ thông tin của Ngân hàng Nhà nước Việt Nam sẽ giúp cải thiện đáng kể chất lượng dữ liệu.

Thông tư số 27/2025/TT-NHNN của Ngân hàng Nhà nước Việt Nam: Hướng dẫn thực hiện một số điều của Luật Phòng, chống rửa tiền

Thông tư số 25/2025/TT-NHNN sửa đổi, bổ sung một số điều Thông tư số 17/2024/TT-NHNN ngày 28/6/2024 quy định việc mở và sử dụng tài khoản thanh toán tại tổ chức cung ứng dịch vụ thanh toán

Thông tư số 26/2025/TT-NHNN của Ngân hàng Nhà nước Việt Nam: Sửa đổi, bổ sung một số điều của Thông tư số 62/2024/TT-NHNN quy định điều kiện, hồ sơ, thủ tục chấp thuận việc tổ chức lại ngân hàng thương mại, tổ chức tín dụng phi ngân hàng

Thông tư số 24/2025/TT-NHNN sửa đổi, bổ sung một số điều của Thông tư số 63/2024/TT-NHNN quy định về hồ sơ, thủ tục thu hồi Giấy phép và thanh lý tài sản của tổ chức tín dụng, chi nhánh ngân hàng nước ngoài; hồ sơ, thủ tục thu hồi Giấy phép văn phòng đại diện tại Việt Nam của tổ chức tín dụng nước ngoài, tổ chức nước ngoài khác có hoạt động ngân hàng

Quyết định số 2977/QĐ-NHNN sửa đổi, bổ sung một số điều của Quyết định số 1158/QĐ-NHNN ngày 29 tháng 5 năm 2018 về tỷ lệ dự trữ bắt buộc đối với tổ chức tín dụng, chi nhánh ngân hàng nước ngoài

Thông tư số 23/2025/TT-NHNN sửa đổi, bổ sung một số điều của Thông tư số 30/2019/TT-NHNN ngày 27 tháng 12 năm 2019 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về thực hiện dự trữ bắt buộc của các tổ chức tín dụng, chi nhánh ngân hàng nước ngoài

Thông tư số 22/2025/TT-NHNN sửa đổi, bổ sung một số điều của Thông tư số 19/2023/TT-NHNN của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về giám sát tiêu hủy tiền của Ngân hàng Nhà nước Việt Nam

Thông tư số 20/2025/TT-NHNN hướng dẫn về hồ sơ, thủ tục chấp thuận danh sách dự kiến nhân sự của ngân hàng thương mại, chi nhánh ngân hàng nước ngoài và tổ chức tín dụng phi ngân hàng

Thông tư số 19/2025/TT-NHNN quy định về mạng lưới hoạt động của tổ chức tài chính vi mô

Thông tư số 18/2025/TT-NHNN quy định về thu thập, khai thác, chia sẻ thông tin, báo cáo của Hệ thống thông tin phục vụ công tác giám sát hoạt động quỹ tín dụng nhân dân và tổ chức tài chính vi mô