Đánh giá một số thuật toán học máy không giám sát sử dụng trong phát hiện gian lận thẻ tín dụng

Công nghệ & ngân hàng số
Thẻ tín dụng ngày càng trở nên phổ biến, điều đó kéo theo sự phát triển nhiều hành vi gian lận trong các giao dịch của loại hình thanh toán này... Tóm tắt: Thẻ tín dụng ngày càng trở nên phổ biến, ...
aa

Thẻ tín dụng ngày càng trở nên phổ biến, điều đó kéo theo sự phát triển nhiều hành vi gian lận trong các giao dịch của loại hình thanh toán này...

Tóm tắt:

Thẻ tín dụng ngày càng trở nên phổ biến, điều đó kéo theo sự phát triển nhiều hành vi gian lận trong các giao dịch của loại hình thanh toán này. Các ngân hàng cần xây dựng hệ thống nhận diện và cảnh báo những giao dịch gian lận nhằm hạn chế thất thoát tài chính. Trong bài viết này, tác giả xây dựng mô hình phán đoán giao dịch gian lận dựa trên bốn thuật toán học máy không giám sát: One-class Support Vector Machine (One-class SVM), K-means, rừng cô lập (Isolation forest) và Local outlier factor (LOF). Từ đó đưa ra so sánh, đánh giá về thời gian thực hiện và hiệu quả của mỗi thuật toán.

Từ khóa: Gian lận thẻ tín dụng, học máy không giám sát.

1. Giới thiệu

Thẻ tín dụng ngày càng trở nên phổ biến trong các hình thức giao dịch online và offline. Đi cùng với sự phát triển và thịnh hành loại hình thanh toán này là các loại tội phạm lừa đảo sử dụng công nghệ cao. Nhận diện những giao dịch lừa đảo liên quan tới thanh toán thẻ tín dụng là một chủ đề nghiên cứu đang được quan tâm trong lĩnh vực trí tuệ nhân tạo và khoa học dữ liệu. Đồng thời, hoạt động này cũng đóng vai trò quan trọng đối với các ngân hàng, giúp các ngân hàng giảm thiểu các thất thoát do những lừa đảo trong các giao dịch. Nhiều kỹ thuật đã được đưa ra và thu được kết quả khả quan, tuy nhiên, độ chính xác và tốc độ xử lý vẫn là một trong những thách thức lớn nhất, bởi dữ liệu thường phân bố rất lệch và thay đổi theo thời gian. Các kỹ thuật học máy có giám sát và không có giám sát đã được áp dụng trong phát hiện lừa đảo trong các giao dịch thẻ tín dụng.

Học máy có giám sát hay còn gọi là học có thầy, là thuật toán dự đoán nhãn/đầu ra của một dữ liệu mới dựa trên tập dữ liệu huấn luyện mà trong đó mỗi mẫu dữ liệu đều đã được gán nhãn. Khi đó, thông qua một quá trình huấn luyện, một mô hình sẽ được xây dựng để cho ra các dự đoán và khi các dự đoán bị sai thì mô hình này sẽ được tinh chỉnh lại. Việc huấn luyện sẽ tiếp tục cho đến khi mô hình đạt được mức độ chính xác mong muốn trên dữ liệu huấn luyện.

Trái với học máy có giám sát, học không giám sát là thuật toán dự đoán nhãn của một dữ liệu mới dựa trên tập dữ liệu huấn luyện mà trong đó, tất cả các mẫu dữ liệu đều chưa được gán nhãn hay nói cách khác là ta không biết câu trả lời chính xác cho mỗi dữ liệu đầu vào. Khi đó, mục tiêu của thuật toán không giám sát không phải là tìm đầu ra chính xác mà sẽ hướng tới việc tìm ra cấu trúc hoặc sự liên hệ trong dữ liệu để thực hiện một công việc nào đó.

Mô hình học máy có giám sát thường thực hiện rất tốt với bộ dữ liệu cân bằng (số lượng dữ liệu giữa các lớp tương đương nhau). Tuy nhiên, đối với bộ dữ liệu không cân bằng, tức là có sự chênh lệch rất lớn về mặt số lượng giữa các lớp, sẽ mất rất nhiều thời gian để phân cụm những giao dịch bình thường, trong khi phát hiện ra những dữ liệu ngoại lệ mới là vấn đề trọng tâm. Trong khi đó, các thuật toán học máy không giám sát có thể xử lý tốt trong trường hợp dữ liệu mất cân bằng hoặc không đủ nhãn. Một ưu điểm khác của học máy không giám sát là thời gian cập nhật mô hình ngắn, do đó phù hợp để sử dụng trong phát hiện các gian lận trong giao dịch. Chính vì vậy, trong bài viết này, tác giả lựa chọn bốn thuật toán học máy không có giám sát: One-class SVM, K-means, Isolation forest và LOF để đánh giá hiệu quả của chúng trong phát hiện các lừa đảo trong giao dịch thẻ tín dụng dựa trên bộ dữ liệu về giao dịch thẻ tín dụng của trang Kaggle (một trong những trang web chuyên về khoa học dữ liệu). Đóng góp chính của bài viết là đưa ra sự so sánh các thuật toán học máy bằng cách đưa ra các độ đo về hiệu quả thực hiện trên cùng một bộ dữ liệu.

2. Một số thuật toán học máy không có giám sát

Thuật toán One-class SVM

Đây là một thuật toán dùng để phân chia dữ liệu thành các nhóm riêng biệt bằng cách xây dựng một siêu phẳng (hyperplane). Về mặt ý tưởng, One-class SVM sử dụng thuật toán để ánh xạ tập dữ liệu ban đầu vào không gian nhiều chiều hơn. Khi đã ánh xạ sang không gian nhiều chiều, One-class SVM sẽ xem xét và chọn ra siêu phẳng phù hợp nhất để phân lớp tập dữ liệu đó.

Scholkopf giới thiệu thuật toán One-class SVM (OC-SVM) vào năm 2001. Đây là thuật toán mở rộng của SVM. Về cơ bản, thuật toán thực hiện tách tất cả các điểm dữ liệu khỏi điểm gốc (trong không gian đặc trưng F) và tối đa khoảng cách từ siêu phẳng này đến điểm gốc. Việc phán đoán ngoại lệ dựa vào một hàm nhị phân. Hàm này thu thập các vùng trong không gian đầu vào nơi mật độ xác suất của dữ liệu tồn tại và trả về giá trị +1 nếu điểm nằm trong vùng thu thập các điểm dữ liệu huấn luyện và -1 đối với các vùng khác.

Thuật toán K-means

K-means là thuật toán đơn giản và phổ biến nhất trong số các thuật toán học máy không giám sát. Mục đích của thuật toán là phân chia các đối tượng đã cho vào các cụm khác nhau, trong đó số lượng cụm được cho trước. Công việc phân cụm được xác lập dựa trên nguyên lý: Các điểm dữ liệu trong cùng một cụm thì phải có cùng một số tính chất nhất định. Tức là giữa các điểm trong cùng một cụm phải có sự liên quan lẫn nhau. Đối với máy tính thì các điểm trong một cụm sẽ là các điểm dữ liệu gần nhau.

Thuật toán Isolation forest

Thuật toán này được đề xuất bởi Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou vào năm 2006. Hầu hết các kỹ thuật dùng để phát hiện dị thường thường dựa trên định nghĩa “thế nào là bình thường”. Từ đó, những gì không nằm trong bộ bình thường thì được coi là bộ dị thường. Trong khi đó, thuật toán Isolation forest lại dùng cách tiếp cận khác: Thay vì xây dựng mô hình nhận diện các bộ bình thường, nó tìm cách cô lập các bộ dị thường trong tập dữ liệu. Ưu điểm của cách tiếp cận này là tốc độ xử lý nhanh và đòi hỏi ít bộ nhớ.

Thuật toán LOF

LOF được Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng và Jorg Sander giới thiệu vào năm 2000. Mục đích của thuật toán là tìm các điểm dị thường bằng cách đo độ lệch cục bộ của một điểm dữ liệu đối với các điểm lân cận nó. LOF dùng chung một số kỹ thuật giống thuật toán DBSCAN và OPTICS, chẳng hạn như khái niệm khoảng cách cốt lõi (core distance) và khoảng cách tiếp cận (reachability distance).

3. Dữ liệu và phương pháp đánh giá

Phương pháp thực hiện

Để đánh giá hiệu quả của các thuật toán trong phát hiện các giao dịch thẻ tín dụng, tác giả đề xuất các bước thực hiện như sau:

Bước 1: Thực hiện tiền xử lý dữ liệu;

Bước 2: Tách dữ liệu giao dịch thành hai tập: huấn luyện và kiểm tra;

Bước 3: Thực hiện các thuật toán với tập dữ liệu huấn luyện để đưa ra mô hình phán đoán gian lận;

Bước 4: Sử dụng tập dữ liệu kiểm tra để tìm độ chính xác của các mô hình. (Hình 1)



Dữ liệu

Trong bài viết này, dữ liệu về các giao dịch thẻ tín dụng trong hai ngày vào tháng 9/2013 của những khách hàng khu vực châu Âu được sử dụng để đánh giá các thuật toán. Tập dữ liệu được khai thác trên trang Kaggle.

Bộ dữ liệu bao gồm 31 trường, bao gồm: Các trường được đặt tên từ V1 đến V28 nhằm che giấu đi những thông tin nhạy cảm, cột Time, Amount và Class (cột Class thể hiện giao dịch đó hợp lệ hay gian lận).

Bộ dữ liệu phân bố rất lệch, có 492 giao dịch được ghi nhận là gian lận (chiếm 0,172%) trong tổng số 284.807 giao dịch. (Hình 2)


4. Các độ đo

Có nhiều độ đo khác nhau để đánh giá hiệu quả của một thuật toán. Các độ đo này dựa trên số lượng giao dịch phát hiện đúng hoặc sai: False Positive (FP), False Negative (FN), True Positive (TP) và True Nagative (TN).

- True Positive: số lượng các giao dịch gian lận được phân loại chính xác vào lớp gian lận.

- True Negative: số lượng giao dịch hợp lệ được phát hiện đúng.

- False Positive: số lượng các giao dịch không phải là gian lận bị phân loại nhầm vào lớp gian lận.

- False Negative: số lượng giao dịch gian lận bị phân loại nhầm vào giao dịch hợp lệ.

Accuracy là tỷ lệ giữa số điểm được dự đoán đúng và tổng số điểm trong tập dữ liệu kiểm thử.



Precision

Precision là tỷ lệ giao dịch gian lận thật sự trong tổng số các giao dịch được phán đoán là gian lận.


Recall hay còn gọi là độ nhạy

Recall là tỷ lệ những giao dịch được phán đoán đúng là gian lận trong tổng số các gian lận thực tế.

F1-score

Đối với những tập dữ liệu không cân bằng (có sự chênh lệch rất lớn giữa số lượng giao dịch hợp lệ và giao dịch gian lận) thì Accuracry, Precision hay Recall không phản ánh được độ chính xác và hiệu quả của thuật toán. Do vậy, cần sử dụng các độ đo mới, một trong số đó là F1-score.


Receiver Operating Characteristic (ROC)

Để tránh chủ quan khi chỉ lựa chọn một ngưỡng để đánh giá mô hình, có một cách là duyệt qua hết tất cả các ngưỡng có thể được và quan sát ảnh hưởng lên các tỷ lệ dự báo TPR và FPR. Khi đó, sẽ dựng được đường cong ROC chứa tất cả các điểm TPR và FPR. (Hình 3)

Hình 3. Minh họa độ đo ROC


Đối với bộ dữ liệu lệch, độ chính xác không đủ để đánh giá tính hiệu quả của thuật toán. Do vậy, trong nội dung bài viết này, tác giả sử dụng độ đo F1-score và ROC.

5. Đánh giá

Sau khi thực hiện các thuật toán để xây dựng mô hình và dự đoán trên cùng một nền tảng phần cứng, ta thấy được sự khác biệt rất lớn về thời gian thực hiện giữa các thuật toán. (Hình 4) One-class SVM cần nhiều thời gian để huấn luyện nhất, trong khi đó thuật toán Isolation forest tốn ít thời gian huấn luyện nhất. Thời gian dự đoán của K-means ít nhất trong khi On-class SVM tốn rất nhiều thời gian để đưa ra kết quả dự đoán.


Xét về hiệu quả của thuật toán, Isolation forest là thuật toán có hiệu quả tốt nhất với ROC = 90,2% và F1-score = 5,2%.

6. Đề xuất hệ thống kiểm tra gian lận trong giao dịch thẻ tín dụng

Với thời gian dự đoán và tính chính xác đã nêu ở phần trên, các thuật toán học máy không giám sát có thể ứng dụng vào xây dựng hệ thống giám sát gian lận trong giao dịch thẻ tín dụng nhằm giảm thiểu công sức con người. Tác giả đề xuất hệ thống nhận diện gian lận có hoạt động như trong Hình 5.


Trong hệ thống này, dữ liệu giao dịch lịch sử được đưa vào kho để làm tập dữ liệu huấn luyện. Từ thuật toán học máy được lựa chọn và tập dữ liệu huấn luyện, hệ thống đưa ra mô hình nhận diện gian lận. Mỗi khi có phát sinh giao dịch mới, hệ thống căn cứ vào dữ liệu giao dịch và dùng mô hình nhận diện gian lận để phán đoán, sau đó module ra quyết định sẽ xác định giao dịch là hợp lệ hay gian lận.

Để cải thiện độ chính xác của hệ thống, dữ liệu giao dịch được cập nhật định kỳ vào kho để huấn luyện lại mô hình.

7. Kết luận

Trong phát hiện gian lận, các thuật toán học máy không giám sát tiến hành mô hình sự phân bố dữ liệu vào một lớp và nhận diện xem dữ liệu kiểm thử (dữ liệu về giao dịch) có thuộc vào lớp này hay không. Theo kết quả thực nghiệm, thời gian xây dựng mô hình và phán đoán gian lận của các thuật toán nêu trên ngắn và độ chính xác khá cao.


Trong số bốn thuật toán học máy đã thực nghiệm thì Isolation forest có độ chính xác cao nhất (với ROC = 90,2%). Tuy nhiên, tỷ lệ phát hiện gian lận này chưa phải là tỷ lệ tốt nhất, do vậy cần phải làm giàu dữ liệu huấn luyện và có những cải tiến để đạt kết quả cao hơn nữa.

Tài liệu tham khảo:

1. A. A. P. S. Benson Edwin Raj, “Analysis on Credit Card Fraud Detection Methods,” in International Conference on Computer, Communication and Electrical Technology - ICCCET2011, 2011.

2. A. C. Bahnsen, A. Stojanovic, D. Aouada and B. Ottersten, “Cost Sensitive Credit Card Fraud Detection Using Bayes Minimum Risk,” in 12th International Conference on Machine Learning and Applications, 2013.

3. D. C. Y. T. L. Z. Kang Fu, “Credit Card Fraud Detection Using Convolutional Neural Networks,” in International Conference on Neural Information Processing, 2016.

4. K. Randhawa, C. K. Loo, M. Seera, C. P. Lim and A. K. Nandi, “Credit Card Fraud Detection Using AdaBoost and Majority Voting,” IEEE Access, vol. 6, pp. 14277 - 14284, 2018.

5. S. K. N. J. Rehan Akbani, “Applying Support Vector Machines to Imbalanced Datasets,” in European Conference on Machine Learning, 2004.

6. T. chlegl, P. Seebock and Waldstein, “discovery, Unsupervised anomaly detection with generative adversarial networks to guide marker,” in International Conference on Information Processing in Medical Imaging, 2017.

7. V. VN, Statistical Learning Theory, Vapnik VN, 1998.

8. J. B. MacQueen, “ Some Methods for classification and Analysis of Multivariate Observations,” Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 2009.

9. M. G. S. A. Mennatallah Amer, “Enhancing one-class support vector machines for unsupervised anomaly detection,” in ODD ‘13: Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description, 2013.

10. F. T. Liu, K. M. Ting and Z.-H. Zhou, “Isolation Forest,” in Eighth IEEE International Conference on Data Mining, 2008.

11. M. M. Breunig, H.-P. Kriegel, R. T. Ng and J. Sander, “LOF: Identifying Density-based Local Outliers,” in Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000.

12. M. L. G. -. ULB, “Credit card fraud detection,” 2018. [Online]. Available: https://www.kaggle.com/mlg-ulb/creditcardfraud.

13. C. M. Bishop, Pattern recognition and machine learning, Springer, 2006.

14. D. M. Powers, “ROC-ConCert: ROC-Based Measurement of Consistency and Certainty,” Spring Congress on Engineering and Technology (SCET), 2012.

15. Fei Tony Liu, Kai Ming Ting, Zhi-Hua Zhou, “Isolation forest,” in In Data Mining, 2008. ICDM’08. Eighth IEEE International Conference.

16. P. J. S.-T. J. S. A. W. R. Sch¨olkopf B, “Estimating the Support of a High-Dimensional Distribution,” Neural Computation, 2001.

17. S. A. Sch¨olkopf B, Learning with Kernels, Cambridge: MIT Press, 2002.

18. G. I. V. V. Boser BE, “A training algorithm for optimal margin classifiers,” Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 1992.

19. V. Chandola, A. Banerjee and K. Kumar, “Anomaly Detection: A Survey,” in ACM Computing Surveys, 2009.

20. Fei Tony Liu, Kai Ming Ting, Zhi-Hua Zhou, “Isolation-Based Anomaly Detection,” in ACM Transactions on Knowledge Discovery from Data, 2012.

21. J. P. J. S.-T. A. J. S. R. W. B. Scholkopf, “Estimating the support of a high-dimentional distribution,” Neural Computation, 2001.


ThS. Cao Thị Nhâm

Đại học Kinh tế - Đại học Đà Nẵng


https://tapchinganhang.gov.vn

Tin bài khác

Pháp luật về bảo vệ dữ liệu cá nhân trong xu hướng chuyển đổi số ngành Ngân hàng

Pháp luật về bảo vệ dữ liệu cá nhân trong xu hướng chuyển đổi số ngành Ngân hàng

Chuyển đổi số mang lại cơ hội phát triển cho ngành Ngân hàng nhưng cũng làm gia tăng rủi ro xâm phạm dữ liệu cá nhân. Dù pháp luật về bảo vệ dữ liệu cá nhân đã có cải thiện, nhưng vẫn tồn tại nhiều bất cập. Bài viết phân tích thực trạng pháp lý hiện nay và đề xuất giải pháp hoàn thiện phù hợp với xu hướng chuyển đổi số.
Đề xuất xây dựng các mô hình tài chính phi tập trung trong trung tâm tài chính Thành phố Hồ Chí Minh

Đề xuất xây dựng các mô hình tài chính phi tập trung trong trung tâm tài chính Thành phố Hồ Chí Minh

Bài viết nghiên cứu tổng quan về tài chính phi tập trung và các mô hình phổ biến, phân tích lợi ích, thách thức, đồng thời đề xuất mô hình phù hợp để phát triển Thành phố Hồ Chí Minh thành trung tâm tài chính quốc tế có sức cạnh tranh khu vực và toàn cầu.
Siêu ứng dụng trong ngành Ngân hàng: Cơ hội và thách thức

Siêu ứng dụng trong ngành Ngân hàng: Cơ hội và thách thức

Siêu ứng dụng và hệ sinh thái ngân hàng không chỉ là xu hướng công nghệ mà đang tái định hình căn bản ngành tài chính - ngân hàng, với mục tiêu mang lại trải nghiệm tích hợp, cá nhân hóa và bao trùm. Mặc dù mở ra tiềm năng lớn trong việc mở rộng khả năng tiếp cận dịch vụ và thúc đẩy đổi mới, tuy nhiên, sự kết hợp này cũng đặt ra những câu hỏi quan trọng trong tương lai.
Chuyển đổi số ngân hàng và bài toán an ninh, an toàn thông tin

Chuyển đổi số ngân hàng và bài toán an ninh, an toàn thông tin

Thời gian qua, ngành Ngân hàng đã nỗ lực không ngừng và phối hợp chặt chẽ với các bộ, ngành liên quan trong công cuộc chuyển đổi số và đã đạt được nhiều thành quả quan trọng. Bên cạnh đó, ngành Ngân hàng cũng gặp những thách thức không nhỏ trong việc đảm bảo an ninh, an toàn thông tin và bảo mật dữ liệu. Thời gian tới, Ngân hàng Nhà nước Việt Nam (NHNN) tiếp tục hoàn thiện các văn bản quy phạm pháp luật theo hướng thúc đẩy phát triển khoa học, công nghệ, đổi mới sáng tạo, chuyển đổi số, đồng thời tăng cường hợp tác các tổ chức tài chính quốc tế trong nghiên cứu, thử nghiệm và áp dụng các công nghệ mới.
GenAI - Tương lai cá nhân hóa dịch vụ khách hàng tại các ngân hàng thương mại Việt Nam

GenAI - Tương lai cá nhân hóa dịch vụ khách hàng tại các ngân hàng thương mại Việt Nam

GenAI đang mở ra những cơ hội chưa từng có trong việc cá nhân hóa dịch vụ khách hàng tại các ngân hàngViệt Nam. Mặc dù vẫn còn nhiều thách thức trong việc triển khai GenAI, tuy nhiên, các ngân hàng Việt Nam đang dần vượt qua những rào cản này để tận dụng tiềm năng to lớn của GenAI trong cung cấp các sản phẩm, dịch vụ. Với sự phát triển của công nghệ và sự chuyển đổi số mạnh mẽ trong ngành Ngân hàng, GenAI hứa hẹn sẽ mang lại những trải nghiệm khách hàng cá nhân hóa tiên tiến, góp phần nâng cao sự hài lòng của khách hàng, tăng cường lòng trung thành và thúc đẩy tăng trưởng bền vững cho các ngân hàng trong kỷ nguyên số.
Nâng cao năng lực đổi mới sáng tạo tại các ngân hàng thương mại Việt Nam

Nâng cao năng lực đổi mới sáng tạo tại các ngân hàng thương mại Việt Nam

Trong xu thế hội nhập kinh tế quốc tế và ảnh hưởng của cuộc Cách mạng công nghiệp lần thứ tư, khách hàng ngày càng mong muốn nhiều hơn sự cách tân, đổi mới đến từ các ngân hàng. Do đó, đổi mới sáng tạo không chỉ là yếu tố cần thiết để các ngân hàng thương mại Việt Nam nâng cao hiệu quả hoạt động và cải thiện chất lượng dịch vụ khách hàng, mà còn là chìa khóa để duy trì năng lực cạnh tranh trong nước và quốc tế, từ đó nâng cao vị thế của ngành Ngân hàng Việt Nam trong nền kinh tế số.
AI Agent: Xu hướng công nghệ mới, thực tiễn quốc tế và giải pháp áp dụng trong lĩnh vực ngân hàng tại Việt Nam

AI Agent: Xu hướng công nghệ mới, thực tiễn quốc tế và giải pháp áp dụng trong lĩnh vực ngân hàng tại Việt Nam

AI Agent không chỉ là một xu hướng công nghệ mà còn là động lực quan trọng để các ngân hàng thích nghi và phát triển trong thời đại số hóa.
Chuyển đổi số tại các ngân hàng thương mại - Kinh nghiệm một số nước và khuyến nghị cho Việt Nam

Chuyển đổi số tại các ngân hàng thương mại - Kinh nghiệm một số nước và khuyến nghị cho Việt Nam

Chuyển đổi số trong ngành Ngân hàng không chỉ đơn thuần là việc tích hợp công nghệ số vào mọi khía cạnh của hoạt động, mà còn là quá trình thúc đẩy sự thay đổi và cải thiện toàn diện. Qua đó, ngân hàng không chỉ tạo ra các phương pháp mới hoặc điều chỉnh các quy trình kinh doanh, mà còn tạo điều kiện cho việc thay đổi văn hóa tổ chức và cải thiện trải nghiệm của khách hàng.
Xem thêm
Đột phá thể chế, pháp luật để đất nước vươn mình

Đột phá thể chế, pháp luật để đất nước vươn mình

Ngày 4/5, Tổng Bí thư Ban Chấp hành trung ương Đảng cộng sản Việt Nam Tô Lâm đã có bài viết, trong đó nêu rõ các yêu cầu mục tiêu; những nhiệm vụ, giải pháp cơ bản để đưa Nghị quyết số 66-NQ/TW ngày 30/04/2025 của Bộ Chính trị vào cuộc sống, mang lại những kết quả thiết thực trong đổi mới công tác xây dựng và thi hành pháp luật đáp ứng yêu cầu phát triển đất nước trong kỷ nguyên mới. Xin trân trọng giới thiệu toàn văn bài viết của đồng chí Tổng Bí thư.
Cơ chế thử nghiệm có kiểm soát trong lĩnh vực ngân hàng

Cơ chế thử nghiệm có kiểm soát trong lĩnh vực ngân hàng

Chính phủ đã ban hành Nghị định số 94/2025/NĐ-CP quy định về Cơ chế thử nghiệm có kiểm soát trong lĩnh vực ngân hàng.
Cấp thiết hoàn thiện pháp luật về tài sản bảo đảm là tài sản số, tín chỉ carbon

Cấp thiết hoàn thiện pháp luật về tài sản bảo đảm là tài sản số, tín chỉ carbon

Cùng với sự phát triển nhanh chóng của nền kinh tế số và quá trình chuyển đổi xanh, vấn đề đặt ra hiện nay là liệu các loại tài sản mới như tài sản số, tín chỉ carbon có thể và sẽ được chấp nhận như thế nào với vai trò là tài sản bảo đảm cho khoản vay tại các tổ chức tín dụng ở Việt Nam. Các chuyên gia trong nước và quốc tế đều cùng chung nhận định đó là cần sớm hoàn thiện pháp luật về tài sản bảo đảm là tài sản số, tín chỉ carbon tại Hội thảo “Tài sản bảo đảm ngân hàng - Những vấn đề quan tâm hiện nay” do Thời báo Ngân hàng tổ chức ngày 28/4/2025.
Những rào cản trong phát triển kinh tế tuần hoàn tại doanh nghiệp và một số giải pháp khắc phục

Những rào cản trong phát triển kinh tế tuần hoàn tại doanh nghiệp và một số giải pháp khắc phục

Trong bối cảnh cuộc Cách mạng công nghiệp lần thứ tư đang diễn ra mạnh mẽ, để đạt được sự phát triển bền vững và hài hòa mối quan hệ giữa tăng trưởng kinh tế và bảo vệ môi trường, việc chuyển đổi mô hình kinh tế từ tuyến tính truyền thống sang nền kinh tế tuần hoàn là hướng đi đúng đắn, phù hợp với chủ trương chính sách của Đảng và Nhà nước ta.
Doanh nghiệp Việt Nam cần có chiến lược linh hoạt, kịp thời để đối phó với thách thức và tận dụng cơ hội từ thị trường nội địa, quốc tế

Doanh nghiệp Việt Nam cần có chiến lược linh hoạt, kịp thời để đối phó với thách thức và tận dụng cơ hội từ thị trường nội địa, quốc tế

Trong bối cảnh các chính sách thuế quan và các biện pháp thương mại quốc tế đang thay đổi nhanh chóng, doanh nghiệp Việt Nam cần phải có những chiến lược linh hoạt và kịp thời để đối phó với những thách thức, đồng thời tận dụng các cơ hội từ thị trường nội địa và quốc tế.
Đánh giá thực tiễn triển khai CBDC tại ngân hàng trung ương của một số quốc gia trên thế giới và khuyến nghị đối với Việt Nam

Đánh giá thực tiễn triển khai CBDC tại ngân hàng trung ương của một số quốc gia trên thế giới và khuyến nghị đối với Việt Nam

Đối với Việt Nam, CBDC có thể đóng vai trò quan trọng trong việc hiện đại hóa hệ thống thanh toán, tăng cường tài chính toàn diện và nâng cao hiệu quả giám sát tiền tệ. Tuy nhiên, để triển khai thành công, cần có một chiến lược rõ ràng, bao gồm: Xác định rõ mục tiêu của CBDC, xây dựng khung pháp lý toàn diện, đầu tư vào hạ tầng công nghệ, thử nghiệm các mô hình triển khai phù hợp và thúc đẩy hợp tác quốc tế để đảm bảo tính tương thích với hệ thống tài chính toàn cầu.
Kinh nghiệm quốc tế về mô hình chuyển đổi số báo chí và một số khuyến nghị đối với lĩnh vực  truyền thông ngành Ngân hàng Việt Nam

Kinh nghiệm quốc tế về mô hình chuyển đổi số báo chí và một số khuyến nghị đối với lĩnh vực truyền thông ngành Ngân hàng Việt Nam

Chuyển đổi số mang lại cơ hội cũng như thách thức lớn đối với hoạt động truyền thông, báo chí ngành Ngân hàng Việt Nam. Việc áp dụng công nghệ không chỉ giúp báo chí gia tăng khả năng truyền tải thông tin, mà còn làm thay đổi phương thức quản lý, sản xuất và phân phối tin tức. Điều này đòi hỏi báo chí ngành Ngân hàng phải đổi mới mô hình tổ chức, bảo đảm tính linh hoạt và sáng tạo.
Thông điệp sau làn sóng tăng thuế đối ứng của Mỹ

Thông điệp sau làn sóng tăng thuế đối ứng của Mỹ

Chính quyền Mỹ cho biết, khi xác định mức thuế quan đối ứng cho mỗi quốc gia, họ không chỉ xem xét thuế nhập khẩu mà còn các hoạt động khác mà họ cho là không công bằng, bao gồm thuế giá trị gia tăng, trợ cấp của chính phủ, chiến lược thao túng tiền tệ, chuyển nhượng công nghệ và các vấn đề liên quan đến sở hữu trí tuệ.
Vươn mình trong hội nhập quốc tế

Vươn mình trong hội nhập quốc tế

Tổng Bí thư Tô Lâm có bài viết với tiêu đề "Vươn mình trong hội nhập quốc tế". Trân trọng giới thiệu toàn văn bài viết của đồng chí Tổng Bí thư.
Kinh nghiệm quốc tế về áp dụng Hiệp ước vốn Basel III trong hoạt động ngân hàng và khuyến nghị cho Việt Nam

Kinh nghiệm quốc tế về áp dụng Hiệp ước vốn Basel III trong hoạt động ngân hàng và khuyến nghị cho Việt Nam

Hòa cùng xu hướng hội nhập kinh tế quốc tế, các ngân hàng thương mại (NHTM) Việt Nam đã từng bước tiếp cận và áp dụng các Hiệp ước vốn Basel. Hiện nay, Việt Nam đã có hơn 20 NHTM áp dụng Basel II và 10 NHTM tiên phong áp dụng Basel III. Đây là bước tiến quan trọng của hệ thống ngân hàng Việt Nam nhằm đáp ứng các chuẩn mực và quy định quốc tế.

Nghị định số 26/2025/NĐ-CP của Chính phủ ngày 24/02/2025 quy định chức năng, nhiệm vụ, quyền hạn và cơ cấu tổ chức của Ngân hàng Nhà nước Việt Nam

Thông tư số 59/2024/TT-NHNN ngày 31/12/2024 Sửa đổi, bổ sung một số điều của Thông tư số 12/2021/TT-NHNN ngày 30 tháng 7 của 2021 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về việc tổ chức tín dụng, chi nhánh ngân hàng nước ngoài mua, bán kỳ phiếu, tín phiếu, chứng chỉ tiền gửi, trái phiếu do tổ chức tín dụng, chi nhánh ngân hàng nước ngoài khác phát hành trong nước

Thông tư số 60/2024/TT-NHNN ngày 31/12/2024 Quy định về dịch vụ ngân quỹ cho tổ chức tín dụng, chi nhánh ngân hàng nước ngoài

Thông tư số 61/2024/TT-NHNN ngày 31/12/2024 Quy định về bảo lãnh ngân hàng

Thông tư số 62/2024/TT-NHNN ngày 31/12/2024 Quy định điều kiện, hồ sơ, thủ tục chấp thuận việc tổ chức lại ngân hàng thương mại, tổ chức tín dụng phi ngân hàng

Thông tư số 63/2024/TT-NHNN ngày 31/12/2024 Quy định về hồ sơ, thủ tục thu hồi Giấy phép và thanh lý tài sản của tổ chức tín dụng, chi nhánh ngân hàng nước ngoài; hồ sơ, thủ tục thu hồi Giấy phép văn phòng đại diện tại Việt Nam của tổ chức tín dụng nước ngoài, tổ chức nước ngoài khác có hoạt động ngân hàng

Thông tư số 64/2024/TT-NHNN ngày 31/12/2024 Quy định về triển khai giao diện lập trình ứng dụng mở trong ngành Ngân hàng

Thông tư số 57/2024/TT-NHNN ngày 24/12/2024 Quy định hồ sơ, thủ tục cấp Giấy phép lần đầu của tổ chức tín dụng phi ngân hàng

Thông tư số 56/2024/TT-NHNN ngày 24/12/2024 Quy định hồ sơ, thủ tục cấp Giấy phép lần đầu của ngân hàng thương mại, chi nhánh ngân hàng nước ngoài, văn phòng đại diện nước ngoài

Thông tư số 55/2024/TT-NHNN ngày 18/12/2024 Sửa đổi khoản 4 Điều 2 Thông tư số 19/2018/TT-NHNN ngày 28 tháng 8 năm 2018 của Thống đốc Ngân hàng Nhà nước Việt Nam hướng dẫn về quản lý ngoại hối đối với hoạt động thương mại biên giới Việt Nam - Trung Quốc