Xếp hạng tín dụng khách hàng cá nhân với khai phá dữ liệu, thuật toán C4.5

Nghiên cứu - Trao đổi
Khai phá dữ liệu (Data Mining - DM) là khái niệm rộng và có thể gây khó khăn cho các nhà nghiên cứu không chuyên sâu về công nghệ thông tin. Điều quan trọng là phải nắm được nguyên lý, khái niệm liên quan đến DM, từ đó, định hướng mục tiêu và ứng dụng DM trong từng lĩnh vực, đặc biệt là trong lĩnh vực tài chính, ngân hàng.
aa

Tóm tắt: Khai phá dữ liệu (Data Mining - DM) là khái niệm rộng và có thể gây khó khăn cho các nhà nghiên cứu không chuyên sâu về công nghệ thông tin. Điều quan trọng là phải nắm được nguyên lý, khái niệm liên quan đến DM, từ đó, định hướng mục tiêu và ứng dụng DM trong từng lĩnh vực, đặc biệt là trong lĩnh vực tài chính, ngân hàng. Bài viết này trình bày các khái niệm cơ bản về DM, ứng dụng của DM trong lĩnh vực tài chính, ngân hàng và phương pháp xếp hạng tín dụng khách hàng cá nhân trong ngân hàng dựa trên kỹ thuật cây quyết định C4.5.

Từ khóa: Học máy, DM, cây quyết định, khách hàng trung thành.

PERSONAL CUSTOMER CREDIT RATING WITH DATA MINING, C4.5-ALGORITHM

Abstract: Data Mining (DM) has so far been a broad concept and make difficulty for researchers who do not specialize in information technology. It is important to understand the principles and concepts of DM so that they can orient their goals and apply DM in each field, especially in banking and finance sector. This artical presents the basic concepts of DM, DM application in banking and finance sector, the solution of personal banking customer credit rating by C4.5 algorithm.

Keywords: Machine learning, DM, decision tree, loyal customer.

1. Tổng quan về xếp hạng tín dụng, DM và cây quyết định

1.1. Xếp hạng tín dụng

Xếp hạng tín dụng là việc đưa ra nhận định về mức độ tín nhiệm đối với trách nhiệm tài chính hoặc đánh giá mức độ rủi ro tín dụng phụ thuộc các yếu tố như năng lực đáp ứng cam kết tài chính, khả năng dễ bị vỡ nợ khi điều kiện kinh doanh thay đổi, ý thức và thiện chí trả nợ của người đi vay. Thang điểm xếp hạng tín dụng khách hàng có thể được minh họa trong Bảng 1.

Bảng 1: Điểm xếp hạng tín dụng khách hàng cá nhân

Nguồn: Ngân hàng Thương mại cổ phần Hàng Hải Việt Nam (MSB)


1.2. DM

DM là tập hợp các thuật toán nhằm chiết xuất những thông tin có ích từ kho dữ liệu khổng lồ. DM được định nghĩa như một quá trình phát hiện mẫu trong dữ liệu, quá trình này có thể là tự động hay bán tự động, song phần nhiều là bán tự động. Các mẫu được phát hiện mang lại cho người sử dụng một lợi thế nào đó, thường là lợi thế về kinh tế. Theo đó, DM giống một quá trình tìm ra và mô tả mẫu dữ liệu. Dữ liệu là một tập hợp các sự vật hay sự kiện, đầu ra của quá trình DM thường là những dự báo của các sự vật hay sự kiện mới. Nó được áp dụng trong các cơ sở dữ liệu quan hệ, giao dịch hay trong kho dữ liệu phi cấu trúc mà điển hình là World Wide Web… Như vậy, mục đích của DM là tìm ra mẫu hoặc mô hình đang tồn tại trong các cơ sở dữ liệu nhưng vẫn còn bị khuất bởi số lượng dữ liệu khổng lồ. Quy trình DM gồm 6 giai đoạn:

Giai đoạn 1: Gom cụm dữ liệu (Gathering). Dữ liệu được gom từ trong một cơ sở dữ liệu, kho dữ liệu hay thanh chứa dữ liệu từ những nguồn cung ứng Web.

Giai đoạn 2: Trích lọc dữ liệu (Selection): Dữ liệu được lựa chọn và phân chia theo một số tiêu chuẩn nào đó, ví dụ chọn tất cả những người tuổi đời từ 25 - 35 và có trình độ đại học.

Giai đoạn 3: Làm sạch tiền xử lý và chuẩn bị trước các dữ liệu (Cleansing pre-processing, preparation): Đây là giai đoạn hay bị sao nhãng, nhưng thực tế nó là một bước rất quan trọng trong quá trình DM. Một số lỗi thường mắc phải trong giai đoạn này là dữ liệu không đầy đủ hoặc không thống nhất, thiếu chặt chẽ. Vì vậy dữ liệu thường chứa các giá trị vô nghĩa và không có khả năng kết nối. Ví dụ, sinh viên có tuổi là 200, đây là dữ liệu dư thừa, không có giá trị.

Giai đoạn 4: Chuyển đổi dữ liệu (Transformation): Dữ liệu được tổ chức để phù hợp hơn với mục đích của DM.

Giai đoạn 5: Phát hiện và trích mẫu dữ liệu (Pattern extraction and discovery): Là giai đoạn tư duy trong DM. Ở giai đoạn này, nhiều thuật toán khác nhau được sử dụng để trích ra các mẫu từ dữ liệu. Thuật toán thường dùng để trích mẫu dữ liệu là thuật toán phân loại dữ liệu, kết hợp dữ liệu, mô hình hóa dữ liệu tuần tự.

Giai đoạn 6: Đánh giá kết quả mẫu (Evaluation of result): Ở giai đoạn này, các mẫu dữ liệu được chiết xuất bởi phần mềm DM nhưng không phải mẫu dữ liệu nào cũng hữu ích, đôi khi nó còn bị sai lệch. Vì vậy cần phải đưa ra tiêu chuẩn đánh giá độ ưu tiên cho các mẫu dữ liệu để rút ra kết quả cần thiết.

1.3. Cây quyết định

Trong lĩnh vực học máy, cây quyết định là một kiểu mô hình dự báo, nghĩa là một ánh xạ từ các quan sát về một sự vật, hiện tượng tới kết luận về giá trị mục tiêu của sự vật, hiện tượng. Mỗi nút trong tương ứng với một biến; đường nối giữa nó với nút con của nó thể hiện giá trị cụ thể cho biến đó. Mỗi nút lá đại diện cho giá trị dự đoán của biến mục tiêu, cho trước giá trị dự đoán của các biến được biểu diễn bởi đường đi từ nút gốc tới nút lá đó. Kỹ thuật học máy dùng trong cây quyết định được gọi là học bằng cây quyết định, hay chỉ gọi với cái tên ngắn gọn là cây quyết định.

Cây quyết định là một phương tiện có tính mô tả dành cho việc tính toán các xác suất có điều kiện. Nó được mô tả là sự kết hợp của các kỹ thuật toán học và tính toán nhằm hỗ trợ việc mô tả, phân loại, tổng quát hóa một tập dữ liệu cho trước. Cây quyết định là sơ đồ phát triển có cấu trúc dạng cây, ví dụ như trong Hình 1:

Hình 1: Sơ đồ cây quyết định

Nguồn: Tác giả tổng hợp


Trong đó:

- Gốc: Là nút trên cùng của cây.

- Nút trong: Biểu diễn một thuộc tính đơn.

- Nhánh: Là một đường đi trên cây, bắt đầu từ nút gốc đến nút lá.

- Nút lá: Biểu diễn tập giá trị cuối cùng của một nhánh.

- Độ cao, mức: Trong một cây, độ cao của đỉnh a là độ dài của đường đi dài nhất từ a đến một lá. Độ cao của gốc được gọi là độ cao của cây, mức của đỉnh a là độ dài của đường đi từ gốc đến a.

Cây quyết định có cấu trúc đơn giản, dễ hiểu và được xây dựng khá nhanh, từ cây quyết định có thể dễ dàng rút ra các luật (series of rules). Ví dụ, từ cây quyết định trong Hình 1, có thể rút ra được các luật sau:

IF (Age <= 35) AND (Salary <= 40) THEN class = bad

IF (Age <= 35) AND (Salary > 40) THEN class = good

IF (Age > 35) AND (Salary <= 50) THEN class = bad

IF (Age > 35) AND (Salary > 50) THEN class = good

Cách thức hoạt động của thuật toán cây quyết định thường thông qua thuật toán ID3 của Ross Quinlan. Đây là thuật toán xây dựng cây quyết định theo cách từ trên xuống. Bất kỳ thuộc tính nào cũng có thể phân vùng tập hợp các đối tượng thành những tập con tách rời với một giá trị chung. ID3 chọn một thuộc tính để kiểm tra tại nút hiện tại của cây và phân vùng tập hợp các đối tượng, thuật toán khi đó xây dựng theo cách đệ quy một cây con cho từng phân vùng. Việc này tiếp tục cho đến khi tập đối tượng của phân vùng đều nằm trong cùng một lớp, lớp đó trở thành nút lá của cây.

Thuật toán C4.5 của Ross Quinlan là một thuật toán cải tiến so với thuật toán ID3 do ID3 làm việc không hiệu quả với các thuộc tính có nhiều giá trị. Thuật toán C4.5 được sử dụng rộng rãi nhất trong thực tế cho đến nay. C4.5 là thuật toán phân lớp dữ liệu dựa trên cây quyết định rất hiệu quả và phổ biến trong những ứng dụng khai phá cơ sở dữ liệu có kích thước nhỏ. Kỹ thuật này cho phép giảm bớt kích thước tập luật và đơn giản hóa các luật mà độ chính xác so với nhánh tương ứng cây quyết định là tương đương. Công thức sử dụng trong thuật toán như sau:


Trong đó:

pi: Xác suất để 1 phần tử bất kỳ trong D thuộc lớp Ci;

m: Số lớp;

InfoA(D): Lượng thông tin cần để phân loại một phần tử trong D dựa trên thuộc tính A. Thuộc tính A dùng phân tách D thành v phân hoạch (D1, D2... Dv). Mỗi phân hoạch Dj gồm |Dj| phần tử trong D. Lượng thông tin này sẽ cho biết mức độ trùng lặp giữa các phân hoạch, nghĩa là một phân hoạch chứa các phần tử từ một lớp hay nhiều lớp khác nhau.

Độ đo Information Gain: Là độ sai biệt giữa trị thông tin Info(D) ban đầu (trước phân hoạch) với trị thông tin mới InfoA(D) (sau phân hoạch với A).

Gain(A) = Info(D) - InfoA(D) Information Gain được sử dụng làm tiêu chuẩn để lựa chọn thuộc tính khi phân lớp. Thuộc tính được chọn là thuộc tính có Gain đạt giá trị lớn nhất.

Để giải quyết vấn đề một thuộc tính được dùng tạo ra rất nhiều phân hoạch (thậm chí mỗi phân hoạch chỉ gồm 1 phân tử), thuật toán C4.5 đã đưa ra các đại lượng GainRatio và SplitInfo, chúng được xác định theo công thức:

Giá trị SplitInfo là đại lượng đánh giá thông tin tiềm năng thu thập được khi phân chia tập D thành v tập con. GainRatio là tiêu chuẩn để đánh giá việc lựa chọn thuộc tính phân loại. Thuộc tính được lựa chọn là thuộc tính có GainRatio đạt giá trị lớn nhất.

Để đánh giá hiệu suất của một cây quyết định, người ta thường sử dụng một tập ví dụ tách rời, tập này khác với tập dữ liệu huấn luyện để đánh giá khả năng phân loại của cây trên các ví dụ của tập này. Tập dữ liệu này gọi là tập kiểm tra. Thông thường, tập dữ liệu sẵn có sẽ được chia thành hai tập: Tập rèn luyện thường chiếm 2/3 số ví dụ và tập kiểm tra chiếm 1/3. Ma trận dưới đây được sử dụng để đánh giá hiệu quả của việc phân lớp với cây quyết định nói chung, C4.5 nói riêng. (Bảng 2)

Bảng 2: Ma trận xác định độ chính xác

của bộ phân lớp

Nguồn: Tổng hợp của tác giả


Trong đó:

- TP: Là số mẫu thuộc lớp C được phân lớp đúng.

- TN: Là số mẫu không thuộc lớp C được phân lớp đúng.

- FP: Là số mẫu thuộc lớp C mà bộ phân lớp sai.

- FN: Là số mẫu không thuộc lớp C mà bộ phân lớp sai.

Từ đó, các độ đo đánh giá quá trình phân lớp được tính như sau:


2. Giải pháp chấm điểm tín dụng dựa trên kỹ thuật cây quyết định C4.5

Nguyên lý hoạt động và các độ đo quan trọng của cây quyết định C4.5 đã được giới thiệu trong các phần trước, trong phần tiếp theo, bài viết sẽ trình bày về việc ứng dụng cây quyết định này để xây dựng mô hình dự báo một khách hàng có được vay vốn hay không dựa trên điểm tín dụng của họ với ví dụ minh họa là bộ dữ liệu khách hàng từ MSB. Một tập cơ sở dữ liệu ban đầu của khách hàng liên quan đến khoản vay với các giá trị dữ liệu đã biết về thuộc tính như: Tuổi, trình độ học vấn, tình trạng hôn nhân, số người phụ thuộc, tính chất công việc, thu nhập hằng tháng.

Đầu vào: Bộ dữ liệu về thông tin khách hàng.

Đầu ra: Các luật về xếp hạng tín dụng khách hàng cá nhân tại ngân hàng.

Công cụ sử dụng: Phần mềm Weka.

Dữ liệu được sử dụng để xây dựng bài toán là một tập hợp các thông tin về khách hàng cá nhân xin cấp tín dụng tại MSB. Dữ liệu này bao gồm 866 bản ghi, được lưu trữ dưới dạng file excel và được chuyển thành file csv như Bảng 3.

Bảng 3: Dữ liệu thông tin khách hàng xin cấp tín dụng tại MSB

Nguồn: Tác giả tổng hợp từ bộ dữ liệu


Bộ dữ liệu gồm có 17 thuộc tính khác nhau, mỗi thuộc tính đều có giá trị hữu hạn. Tên các thuộc tính và tập giá trị của nó được trình bày trong Bảng 4.


Bảng 4: Các thuộc tính và tập giá trị của nó

Nguồn: Tác giả tổng hợp từ bộ dữ liệu


- Sản phẩm, dịch vụ sử dụng:

Loại 1: Tiền gửi và các dịch vụ khác.

Loại 2: Chỉ sử dụng dịch vụ thanh toán.

Loại 3: Không sử dụng.

- Tình hình trả nợ gốc và lãi:

Loại 1: Luôn trả nợ đúng hạn.

Loại 2: Đã bị gia hạn nợ, hiện trả nợ tốt.

Loại 3: Đã có nợ quá hạn hoặc khách hàng mới.

Loại 4: Đã có nợ quá hạn, khách hàng trả nợ không ổn định.

Loại 5: Hiện đang có nợ quá hạn.

- Uy tín giao dịch:

Loại 1: Có giao dịch vào, ra đều đặn hoặc trả nợ đầy đủ.

Loại 2: Khách hàng mới, chưa cấp hạn mức.

Loại 3: Từ 2 đến 3 tháng không có giao dịch tiền vào và (hoặc) phát sinh nợ loại 2.

Loại 4: Trên 3 tháng không có giao dịch tiền vào và (hoặc) phát sinh nợ loại 3, 4, 5.

Trong quá trình DM, công việc tiền xử lý dữ liệu trước khi đưa vào mô hình là rất cần thiết. Bước này cho biết dữ liệu qua thu thập ban đầu có thể được áp dụng thích hợp với các mô hình DM cụ thể. Các công việc bao gồm:

- Filtering Attributes: Chọn các thuộc tính phù hợp với mô hình.

- Filtering Sample: Lọc các mẫu dữ liệu cho mô hình.

- Transformation: Chuyển đổi kiểu dữ liệu cho phù hợp.

- Discretization: Rời rạc hóa dữ liệu.

Cụ thể đối với thuộc tính được mã hóa mô tả tại Bảng 5, 6, 7, 8, 9.

Bảng 5: Gán nhãn cho thuộc tính “tuổi”

Nguồn: Tác giả tổng hợp từ bộ dữ liệu

Bảng 6: Gán nhãn cho thuộc tính

“số người phụ thuộc”

Nguồn: Tác giả tổng hợp từ bộ dữ liệu

Bảng 7: Gán nhãn cho thuộc tính

“thời gian công tác”

Nguồn: Tác giả tổng hợp từ bộ dữ liệu

Bảng 8: Gán nhãn cho thuộc tính

“thu nhập hằng tháng”

Nguồn: Tác giả tổng hợp từ bộ dữ liệu

Bảng 9: Gán nhãn cho thuộc tính

“tỉ lệ số tiền phải trả trên thu nhập”

Nguồn: Tác giả tổng hợp từ bộ dữ liệu


3. Thực nghiệm

Sau khi đã thực hiện qua bước tiền xử lý dữ liệu, tác giả tiến hành phân loại dữ liệu bằng thuật toán C4.5. Trước khi tiến hành phân loại, tác giả chọn chế độ kiểm thử để xây dựng tập kiểm thử và tập huấn luyện. Weka hỗ trợ 4 chế độ kiểm thử:

- Use training set: Sử dụng chính tập training data để tiến hành kiểm thử.

- Supplied test set: Sử dụng tập dữ liệu khác để tiến hành kiểm thử.

- Cross-validation: Chia dữ liệu thành nhiều phần để thực hiện thành nhiều lần đánh giá kết quả.

- Percentage split: Chia dữ liệu thành hai phần theo tỉ lệ %, một phần dùng để xây dựng mô hình, một phần dành cho kiểm thử.

Sử dụng chế độ kiểm thử Use training set thu được kết quả như Hình 2.

Hình 2: Kết quả thuật toán dưới dạng Text


Nguồn: Tác giả tổng hợp từ phần mềm Weka

Kết quả thu được sau quá trình huấn luyện là tập các luật thu được dạng mô hình cây như sau:

TGCongtac = 2

| UytinGD = Loai 1

| | Songuoiphuthuoc = 1

| | | Trinhdohocvan = TrenDH: AA (1.0)

| | | Trinhdohocvan = Daihoc

| | | | SPDVsudung = Loai 1: AAA (3.0)

| | | | SPDVsudung = Loai 2: AA (2.0)

| | | Trinhdohocvan = Trunghoc: AA (0.0)

| | | Trinhdohocvan = Duoitrunghoc: BBB (2.0)

| | | Trinhdohocvan = Caodang: AA (2.0)

| | Songuoiphuthuoc = 2: AA (11.0)

| | Songuoiphuthuoc = 3: BBB (1.0)

| | Songuoiphuthuoc = 4: AA (0.0)

| | Songuoiphuthuoc = 5: A (1.0)


Căn cứ vào các luật được sinh ra như trên, chúng ta có thể diễn giải các luật đó cụ thể hơn từ cây quyết định:

- Luật 1: IF (TGCongtac = 1) AND (UytinGD = Loai 1) AND (SPDVsudung = Loai 1) AND (TTNhao = Chusohuu) THEN (XHTD = AAA).

- Luật 2: IF (TGCongtac = 1) AND (UytinGD = Loai 1) AND (SPDVsudung = Loai 1) AND (TTNhao = Thue) THEN (XHTD = AA).

- Luật 3: IF (TGCongtac = 1) AND (UytinGD = Loai 1) AND (SPDVsudung = Loai 2) AND (Songuoiphuthuoc = 1) AND (Tuoi = 1) THEN (XHTD = AA).

- Luật 4: IF (TGCongtac = 1) AND (UytinGD = Loai 1) AND (SPDVsudung = Loai 2) AND (Songuoiphuthuoc = 1) AND (Tuoi = 2) THEN (XHTD = BBB).

- Luật 5: IF (TGCongtac = 1) AND (UytinGD = Loai 1) AND (SPDVsudung = Loai 2) AND (Songuoiphuthuoc = 1) AND (Tuoi = 3) AND (Trinhdohocvan = Daihoc THEN (XHTD = AA).

- Luật 6: IF (TGCongtac = 2) AND (UytinGD = Loai 1) AND (Songuoiphuthuoc = 1) AND (Trinhdohocvan = TrenDH) THEN (XHTD = AA).

- Luật 7: IF (TGCongtac = 2) AND (UytinGD = Loai 1) AND (Songuoiphuthuoc = 1) AND (Trinhdohocvan = Daihoc) AND (SPDVsudung = Loai 1) THEN (XHTD = AAA).

- Luật 8: IF (TGCongtac = 2) AND (UytinGD = Loai 4) AND (SPDVsudung = Loai 1) AND (Oto = Khong) AND (TSThechap = Khong) THEN (XHTD = CCC).

Bài toán xây dựng cây quyết định xếp hạng tín dụng được thử nghiệm trên phần mềm Weka với bộ số liệu của MSB thu được kết quả tương đối tốt. Dựa vào kết quả thực nghiệm, thu được các thông tin như Hình 3.

Hình 3: Kết quả sau khi thực hiện trên phần mềm Weka

Nguồn: Tác giả tổng hợp từ phần mềm Weka


Từ Hình 3, ta thấy lớp “AAA”có độ chính xác cao nhất với tỉ lệ các mẫu được phân lớp đúng đạt 97,9%, chỉ có 0,4% mẫu bị phân lớp sai. Tỉ lệ các mẫu thuộc lớp “AAA” được phân loại đúng lần lượt chiếm 96,8%, 97,9% trên tổng số các mẫu được phân loại vào lớp "AAA" và trên tổng số các mẫu có giá trị thực thuộc lớp này. Giá trị F-Measure và ROC Area càng tiến gần về 1 có nghĩa mô hình càng tốt. Tương tự với các lớp còn lại.

Với mô hình cây quyết định, kết quả được mô phỏng phân loại một cách trực quan, dễ hiểu đối với người sử dụng, có thể rút ra các luật một cách nhanh chóng, dễ dàng dự đoán trước khả năng của khách hàng, từ đó đưa ra những quyết định phù hợp hơn.

4. Kết luận và hướng phát triển

Các ngân hàng thương mại thường xuyên phải đưa ra các quyết định liên quan đến quá trình cho vay của mình với mục tiêu giảm thiểu tối đa rủi ro cho vay. Với dự đoán đã thu được, nhà quản trị ngân hàng có thể sẽ dễ dàng ra quyết định tùy vào tình huống thực tế. Tuy nhiên, với bộ dữ liệu thu thập được có kích thước tương đối nhỏ, kết quả phân loại khi sử dụng cây quyết định đối với các trường hợp khác có thể chưa cao. Các luật cung cấp thêm thông tin, gợi ý trong quá trình xếp hạng tín dụng nhưng không dựa vào hoàn toàn. Tùy vào từng trường hợp, từng khách hàng cụ thể mà ngân hàng có thể áp dụng một cách linh hoạt. Như vậy, với những kết quả đã rút ra được, có thể khẳng định rằng, phương pháp cây quyết định áp dụng trong xếp hạng tín dụng là một hướng tiếp cận tiềm năng. Do đó, nhóm tác giả đề xuất một số vấn đề cần nghiên cứu, phát triển để các ngân hàng có thể áp dụng mô hình cây quyết định như sau:

Thứ nhất, cần bổ sung thêm dữ liệu cho tập huấn luyện để mô hình cây quyết định có độ tin cậy cao hơn và hoạt động hiệu quả hơn. Đặc biệt là việc tổng hợp các nguồn dữ liệu từ các ngân hàng thương mại khác nhau.

Thứ hai, tiếp tục phát triển, hoàn thiện theo hướng DM trở thành phần mềm trong tín dụng tiêu dùng nhằm hỗ trợ cán bộ tín dụng đưa ra quyết định cho khách hàng vay và quản trị rủi ro tín dụng hiệu quả.

Thứ ba, tiếp tục nghiên cứu các thuật toán về DM và học máy nhằm áp dụng nhiều hơn nữa các kỹ thuật này trong lĩnh vực tài chính, ngân hàng.

Thứ tư, đẩy mạnh hợp tác nghiên cứu giữa trường đại học với ngân hàng thương mại để ứng dụng các nghiên cứu từ trường đại học vào thực tế, đồng thời, sử dụng được nguồn dữ liệu từ ngân hàng thương mại trong việc nghiên cứu.

Tài liệu tham khảo:

1. Bhatia, S., Sharma, P., Burman, R., Hazari, S., & Hande, R, (2017), Credit scoring using machine learning techniques., International Journal of Computer Applications, 161(11), pages 1-4.

2. Ian H. Witten, Eibe Frank, and Marker Hall, (2011), “Data Mining- Practical Machine Learning Tools and Techniques”, Morgan Kaufmann.

3. Leo, M., Sharma, S., & Maddulety, K., (2019), Machine learning in banking risk managemen, t: A literature review. Risks, 7(1), 29.

4. M Madhavi, M V R Srivatsava, 92023), “Fraud Detection in Banking”, International Journal of Engineering and Advanced Technology, Volume 3, Issue 1, pages 322-358.

5. M. Al-Shabi, 92019), Credit card fraud detection using autoencoder model in unbalanced datasets, J. Adv. Math. Comput. Sci, 33, pages 1-16.

6. Meenakshi, D., & Janani, (2019), Credit Card Fraud Detection Using Random Forest., International Research Journal of Engineering and Technology (IRJET), 6.

7. S. Ghosh, DL Reilly, (2004), Credit card fraud detection with a neural-network, Proceedings of the Twenty-Seventh Hawaii International Conference on. Vol. 3. IEEE, 1994.


ThS. Nguyễn Dương Hùng; ThS. Ngô Thùy Linh

Khoa Công nghệ thông tin và Kinh tế số, Học viện Ngân hàng


https://tapchinganhang.gov.vn

Tin bài khác

Thực thi ESG và báo cáo phát triển bền vững trong ngành Ngân hàng Việt Nam: Thực trạng, thách thức và giải pháp

Thực thi ESG và báo cáo phát triển bền vững trong ngành Ngân hàng Việt Nam: Thực trạng, thách thức và giải pháp

Trong bối cảnh toàn cầu đang bước vào giai đoạn chuyển đổi mạnh mẽ để thực hiện cam kết Net Zero vào năm 2050 và đạt được các Mục tiêu phát triển bền vững, ESG đã và đang trở thành một yêu cầu tất yếu đối với hệ thống tài chính nói chung và ngành Ngân hàng nói riêng...
Vận dụng tư tưởng Hồ Chí Minh về kinh tế tư nhân trong giai đoạn hiện nay

Vận dụng tư tưởng Hồ Chí Minh về kinh tế tư nhân trong giai đoạn hiện nay

Tư tưởng Hồ Chí Minh về kinh tế tư nhân là kim chỉ nam giúp chúng ta xây dựng nền kinh tế độc lập, tự chủ, không chỉ hội nhập thành công với thế giới mà còn giữ vững được bản sắc dân tộc, bảo đảm sự ổn định và phát triển lâu dài cho đất nước trong kỷ nguyên mới, kỷ nguyên vươn mình của dân tộc.
Báo cáo phát triển bền vững của các ngân hàng thương mại Việt Nam - Thực trạng và hàm ý chính sách

Báo cáo phát triển bền vững của các ngân hàng thương mại Việt Nam - Thực trạng và hàm ý chính sách

Những năm gần đây, nhiều tập đoàn đã bắt đầu chú trọng vào các vấn đề đảm bảo tính bền vững trong các hoạt động sản xuất, kinh doanh, chuỗi cung ứng và các quyết định đầu tư của mình. Tại các buổi thảo luận của Liên hợp quốc, các quốc gia trong nhóm Tổ chức Hợp tác và Phát triển Kinh tế (OECD) và G20 đã thể hiện sự đồng thuận mang tính quốc tế cao rằng, để tăng cường tính ổn định tài chính và phát triển kinh tế dài hạn, cần nhanh chóng cải thiện các hoạt động về quản trị trách nhiệm với môi trường và xã hội (Environmental and Social Governance - E&S) tại các doanh nghiệp. Một trong những hoạt động mà Liên hợp quốc hướng tới là khuyến khích các doanh nghiệp thực hiện Báo cáo phát triển bền vững.
Kinh nghiệm quốc tế về thuế đối với các tài sản điện tử - Một số khuyến nghị chính sách đối với Việt Nam

Kinh nghiệm quốc tế về thuế đối với các tài sản điện tử - Một số khuyến nghị chính sách đối với Việt Nam

Tài sản điện tử đang tăng trưởng nhanh chóng, phản ánh xu hướng số hóa không thể đảo ngược trong hệ thống tài chính toàn cầu. Việc hoàn thiện và sớm ban hành một khung chính sách thuế toàn diện đối với tài sản điện tử trên nền pháp lý mà Luật Công nghiệp công nghệ số năm 2025 đã tạo dựng là nhiệm vụ hết sức cấp thiết đối Việt Nam hiện nay...
Phương thức hậu kiểm chi ngân sách qua Kho bạc Nhà nước theo mô hình hai cấp

Phương thức hậu kiểm chi ngân sách qua Kho bạc Nhà nước theo mô hình hai cấp

Nghiên cứu phân tích phương thức hậu kiểm trong kiểm soát chi ngân sách nhà nước qua hệ thống Kho bạc Nhà nước trong bối cảnh hiện đại hóa tài chính công theo Quyết định số 385/QĐ-BTC. Trên cơ sở thực tiễn và kinh nghiệm quốc tế, nghiên cứu khẳng định hậu kiểm là xu hướng tất yếu nhằm nâng cao hiệu quả kiểm soát chi, giảm thủ tục hành chính và thúc đẩy giải ngân. Tác giả đề xuất mô hình hậu kiểm gồm ba nội dung trọng tâm: Tổ chức bộ máy tách biệt chức năng thanh toán và kiểm soát, kiểm soát theo mức độ rủi ro và ứng dụng công nghệ, trí tuệ nhân tạo.
Các nhân tố ảnh hưởng đến khả năng tiếp cận tài chính xanh của doanh nghiệp tại Việt Nam

Các nhân tố ảnh hưởng đến khả năng tiếp cận tài chính xanh của doanh nghiệp tại Việt Nam

Việc nghiên cứu, giải quyết các rào cản trong tiếp cận nguồn tài chính xanh của doanh nghiệp tại Việt Nam là rất quan trọng nhằm thúc đẩy phát triển bền vững và bảo vệ môi trường, cũng như giúp doanh nghiệp nâng tầm giá trị trên thị trường quốc tế. Những rào cản hiện tại không chỉ làm chậm tiến trình thực hiện các dự án xanh mà còn cản trở việc đạt được các mục tiêu phát triển bền vững của quốc gia. Bài viết phân tích các nhân tố ảnh hưởng đến việc tiếp cận tài chính xanh của các doanh nghiệp tại Việt Nam; từ đó, đề xuất một số khuyến nghị để hỗ trợ các doanh nghiệp tiếp cận dễ dàng hơn với nguồn tài chính xanh, bảo đảm sự đồng bộ, hiệu quả trong việc thực hiện các chính sách phát triển bền vững của Chính phủ.
Các yếu tố tác động đến hiệu quả hoạt động của các chi nhánh ngân hàng nước ngoài trên địa bàn Thành phố Hồ Chí Minh

Các yếu tố tác động đến hiệu quả hoạt động của các chi nhánh ngân hàng nước ngoài trên địa bàn Thành phố Hồ Chí Minh

Với kinh nghiệm hoạt động trong lĩnh vực ngân hàng quốc tế, các chi nhánh ngân hàng nước ngoài có hệ thống tổ chức, hoạt động, quản trị chuyên nghiệp, ứng dụng khoa học, công nghệ hiện đại, đội ngũ nhân sự có kinh nghiệm từ nước ngoài và đội ngũ nhân sự bản địa được đào tạo chất lượng cao, cung cấp các dịch vụ tài chính ngân hàng.
Kinh nghiệm cho các chủ thể tham gia hoạt động thanh toán quốc tế bằng phương thức thư tín dụng

Kinh nghiệm cho các chủ thể tham gia hoạt động thanh toán quốc tế bằng phương thức thư tín dụng

Việt Nam là một trong những quốc gia chủ động hội nhập kinh tế khi tham gia sâu rộng vào nhiều hiệp định thương mại tự do. Theo đó, phương thức thư tín dụng (L/C) cũng được sử dụng ngày càng phổ biến trong các hoạt động thanh toán quốc tế. Tuy nhiên, bên cạnh những lợi ích đạt được, các doanh nghiệp trong nước cũng phải đối mặt với những chiêu trò lừa đảo chào bán, mua hàng, ký kết hợp đồng giao dịch thương mại quốc tế với nhiều thủ đoạn đa dạng, tinh vi, khó phát hiện, gây tổn thất nặng nề về tài chính. Do đó, cần thiết có những bài học kinh nghiệm từ hoạt động thanh toán quốc tế bằng phương thức L/C trong bối cảnh nền kinh tế toàn cầu đang đối mặt với hàng loạt vấn đề nan giải.
Xem thêm
Chính thức bãi bỏ quy định nhà nước độc quyền sản xuất vàng miếng, xuất, nhập khẩu vàng nguyên liệu để sản xuất vàng miếng

Chính thức bãi bỏ quy định nhà nước độc quyền sản xuất vàng miếng, xuất, nhập khẩu vàng nguyên liệu để sản xuất vàng miếng

Ngày 26/8/2025, Chính phủ đã ban hành Nghị định số 232/2025/NĐ-CP sửa đổi, bổ sung một số điều của Nghị định số 24/2012/NĐ-CP về quản lý hoạt động kinh doanh vàng, trong đó có một số quy định đáng chú ý như: Bãi bỏ quy định nhà nước độc quyền sản xuất vàng miếng, xuất, nhập khẩu vàng nguyên liệu để sản xuất vàng miếng; Ngân hàng Nhà nước Việt Nam (NHNN) cấp hạn mức hàng năm và Giấy phép từng lần cho doanh nghiệp, ngân hàng thương mại để xuất khẩu, nhập khẩu vàng miếng; việc thanh toán mua, bán vàng có giá trị từ 20 triệu đồng trong ngày trở lên của một khách hàng phải được thực hiện thông qua tài khoản thanh toán của khách hàng và tài khoản thanh toán của doanh nghiệp kinh doanh vàng mở tại ngân hàng thương mại, chi nhánh ngân hàng nước ngoài…
Quản lý tín dụng bất động sản: Kinh nghiệm quốc tế và một số khuyến nghị cho Việt Nam

Quản lý tín dụng bất động sản: Kinh nghiệm quốc tế và một số khuyến nghị cho Việt Nam

Tại Việt Nam, tín dụng bất động sản không chỉ đóng vai trò hỗ trợ hoạt động đầu tư, xây dựng, mà còn là công cụ tài chính quan trọng giúp triển khai các mục tiêu phát triển nhà ở, cải thiện chất lượng sống và cấu trúc đô thị.
Huy động vốn cho vay đối tượng yếu thế: Kinh nghiệm quốc tế và gợi mở hoàn thiện pháp luật cho Ngân hàng Chính sách xã hội Việt Nam

Huy động vốn cho vay đối tượng yếu thế: Kinh nghiệm quốc tế và gợi mở hoàn thiện pháp luật cho Ngân hàng Chính sách xã hội Việt Nam

Huy động vốn để thực hiện hoạt động cho vay của Ngân hàng Chính sách xã hội Việt Nam (NHCSXH) là một nhiệm vụ quan trọng, trọng tâm của tổ chức này. Đây là nguồn lực cơ bản, quyết định đến quy mô, hiệu quả và tính bền vững trong việc thực hiện các chương trình tín dụng chính sách của Chính phủ, nhằm hỗ trợ người nghèo, các đối tượng chính sách và hộ gia đình khó khăn có điều kiện phát triển sản xuất, cải thiện đời sống.
Khai thác giá trị kinh tế từ ngành công nghiệp âm nhạc Việt Nam trong kỷ nguyên số

Khai thác giá trị kinh tế từ ngành công nghiệp âm nhạc Việt Nam trong kỷ nguyên số

Trước những cơ hội rộng mở nhưng cũng đầy thách thức trong kỷ nguyên số, việc khai thác tối đa giá trị kinh tế từ ngành công nghiệp âm nhạc Việt Nam đòi hỏi những định hướng chiến lược và giải pháp đồng bộ. Các giải pháp này không chỉ nhằm tháo gỡ những rào cản về pháp lý, hạ tầng, công nghệ và nhân lực, mà còn hướng tới việc nâng cao năng lực cạnh tranh, mở rộng thị trường và gia tăng giá trị sản phẩm âm nhạc.
Thủ tướng: Có chính sách ưu tiên, nguồn lực ưu tiên, tín dụng ưu tiên với vùng đồng bào dân tộc thiểu số và miền núi

Thủ tướng: Có chính sách ưu tiên, nguồn lực ưu tiên, tín dụng ưu tiên với vùng đồng bào dân tộc thiểu số và miền núi

Nhấn mạnh yêu cầu không ngừng nâng cao đời sống vật chất và tinh thần của nhân dân vùng đồng bào dân tộc thiểu số và miền núi, năm sau phải cao hơn năm trước, nhiệm kỳ sau cao hơn nhiệm kỳ trước, đặc biệt là tạo được phong trào, xu thế của người dân tự lực, tự cường thoát nghèo, làm giàu, Thủ tướng Phạm Minh Chính định hướng bố trí khoảng 160.000 tỉ đồng cho Chương trình mục tiêu quốc gia phát triển kinh tế - xã hội vùng đồng bào dân tộc thiểu số và miền núi trong giai đoạn tới.
Hệ thống tiền tệ quốc tế trong thế giới đang thay đổi

Hệ thống tiền tệ quốc tế trong thế giới đang thay đổi

Ngày 22/7/2025, Quỹ Tiền tệ quốc tế (IMF) công bố Báo cáo về giám sát hệ thống tiền tệ quốc tế (IMS), đây là báo cáo định kỳ đầu tiên nhằm đánh giá xu hướng thay đổi liên quan đến hệ thống này. Theo đó, trong những thập niên gần đây, IMS vẫn ổn định về cơ bản và tập trung vào USD, mặc dù các động lượng đang thay đổi trên toàn cầu.
Rủi ro thanh khoản, hàm lượng vốn chủ sở hữu và khả năng sinh lời của các ngân hàng thương mại khu vực Đông Nam Á

Rủi ro thanh khoản, hàm lượng vốn chủ sở hữu và khả năng sinh lời của các ngân hàng thương mại khu vực Đông Nam Á

Bài nghiên cứu này sẽ tập trung vào nhóm 4 nước là Việt Nam, Thái Lan, Malaysia và Campuchia. Nhóm tác giả sử dụng phương pháp hồi quy ngưỡng và dữ liệu bảng để tìm ra một ngưỡng tổng tài sản của các ngân hàng tại 4 quốc gia này, đánh giá việc các ngân hàng có mức tổng tài sản trên và dưới ngưỡng này tạo ra khả năng sinh lời dương hay âm. Nghiên cứu dựa trên 2 yếu tố chính để đánh giá đó chính là tỉ lệ vốn chủ sở hữu trên tổng tài sản và tỉ lệ các khoản vay so với các khoản tiền gửi.
Cục Dự trữ Liên bang Mỹ trước ngã rẽ quyết định về lãi suất

Cục Dự trữ Liên bang Mỹ trước ngã rẽ quyết định về lãi suất

Áp lực chính trị trong năm 2025 gia tăng đáng kể khi Cục Dự trữ Liên bang Mỹ (Fed) được kêu gọi hạ lãi suất nhanh và mạnh nhằm hỗ trợ tăng trưởng kinh tế trong bối cảnh GDP có dấu hiệu chậm lại và thị trường lao động xuất hiện tín hiệu suy yếu.
Vị thế của đô la Mỹ trên thị trường tài chính toàn cầu

Vị thế của đô la Mỹ trên thị trường tài chính toàn cầu

Tháng 4/2025 chứng kiến cuộc khủng hoảng niềm tin nghiêm trọng đối với đồng USD, bất chấp lợi suất trái phiếu Mỹ tăng. Bài viết phân tích những bất thường trên thị trường tài chính toàn cầu sau các biện pháp thuế quan gây tranh cãi của Mỹ, đồng thời chỉ ra nguyên nhân từ sự thay đổi cấu trúc tài chính, phi toàn cầu hóa và biến động địa chính trị. Nếu xu hướng này tiếp diễn, USD có nguy cơ mất dần vị thế, đe dọa sự ổn định của hệ thống tài chính thế giới.
Kinh nghiệm quốc tế về áp dụng Hiệp ước vốn Basel III  trong hoạt động ngân hàng và khuyến nghị cho Việt Nam

Kinh nghiệm quốc tế về áp dụng Hiệp ước vốn Basel III trong hoạt động ngân hàng và khuyến nghị cho Việt Nam

Hiệp ước vốn Basel III là khuôn khổ nâng cao với sự sửa đổi và củng cố cả ba trụ cột của Basel II, đây là công cụ hỗ trợ đắc lực để nâng cao chất lượng quản trị rủi ro và năng lực cạnh tranh của các ngân hàng. Bài viết phân tích tình hình áp dụng các Hiệp ước vốn Basel của hệ thống ngân hàng trên thế giới, cùng với kinh nghiệm quốc tế và thực tiễn tại Việt Nam trong việc áp dụng Hiệp ước vốn Basel III, tác giả đưa ra một số đề xuất giải pháp chính sách cho hệ thống ngân hàng...

Thông tư số 14/2025/TT-NHNN quy định tỷ lệ an toàn vốn đối với ngân hàng thương mại, chi nhánh ngân hàng nước ngoài

Thông tư số 10/2025/TT-NHNN quy định về tổ chức lại, thu hồi Giấy phép và thanh lý tài sản của quỹ tín dụng nhân dân

Thông tư số 07/2025/TT-NHNN Sửa đổi, bổ sung một số điều của Thông tư số 39/2024/TT-NHNN ngày 01 tháng 7 năm 2024 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về kiểm soát đặc biệt đối với tổ chức tín dụng

Thông tư số 08/2025/TT-NHNN Sửa đổi, bổ sung một số điều của Thông tư số 43/2015/TT-NHNN ngày 31 tháng 12 năm 2015 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về tổ chức và hoạt động của phòng giao dịch bưu điện trực thuộc Ngân hàng thương mại cổ phần Bưu điện Liên Việt, Thông tư số 29/2024/TT-NHNN ngày 28 tháng 6 năm 2024 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về quỹ tín dụng nhân dân và Thông tư số 32/2024/TT-NHNN ngày 30 tháng 6 năm 2024 của Thống đốc Ngân hàng Nhà nướ

Nghị định số 94/2025/NĐ-CP ngày 29 tháng 4 năm 2025 của Chính phủ quy định về Cơ chế thử nghiệm có kiểm soát trong lĩnh vực ngân hàng

Nghị định số 26/2025/NĐ-CP của Chính phủ ngày 24/02/2025 quy định chức năng, nhiệm vụ, quyền hạn và cơ cấu tổ chức của Ngân hàng Nhà nước Việt Nam

Thông tư số 59/2024/TT-NHNN ngày 31/12/2024 Sửa đổi, bổ sung một số điều của Thông tư số 12/2021/TT-NHNN ngày 30 tháng 7 của 2021 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về việc tổ chức tín dụng, chi nhánh ngân hàng nước ngoài mua, bán kỳ phiếu, tín phiếu, chứng chỉ tiền gửi, trái phiếu do tổ chức tín dụng, chi nhánh ngân hàng nước ngoài khác phát hành trong nước

Thông tư số 60/2024/TT-NHNN ngày 31/12/2024 Quy định về dịch vụ ngân quỹ cho tổ chức tín dụng, chi nhánh ngân hàng nước ngoài

Thông tư số 61/2024/TT-NHNN ngày 31/12/2024 Quy định về bảo lãnh ngân hàng

Thông tư số 62/2024/TT-NHNN ngày 31/12/2024 Quy định điều kiện, hồ sơ, thủ tục chấp thuận việc tổ chức lại ngân hàng thương mại, tổ chức tín dụng phi ngân hàng