Ứng dụng trí tuệ nhân tạo tạo sinh trong quản lí tài sản

Công nghệ & ngân hàng số
Sự xuất hiện của trí tuệ nhân tạo (AI) tạo sinh (Generative Artifitial Intelligence - GenAI) làm thay đổi đáng kể phương thức mà con người sinh hoạt và lao động. GenAI được đánh giá là công cụ có thể mang lại sự tăng trưởng năng suất lao động đáng kể trong nhiều thập kỉ tới.
aa

Tóm tắt: Sự xuất hiện của trí tuệ nhân tạo (AI) tạo sinh (Generative Artifitial Intelligence - GenAI) làm thay đổi đáng kể phương thức mà con người sinh hoạt và lao động. GenAI được đánh giá là công cụ có thể mang lại sự tăng trưởng năng suất lao động đáng kể trong nhiều thập kỉ tới. Trong phạm vi bài viết, tác giả nghiên cứu và phân tích các ứng dụng của GenAI trong quản lí tài sản và thách thức trong quá trình ứng dụng AI của các tổ chức, doanh nghiệp. Từ đó, nghiên cứu chỉ ra hạn chế và nguyên nhân của quá trình ứng dụng GenAI trong quản lí tài sản tại thị trường Việt Nam. Bài viết cũng nêu một số kiến nghị nhằm triển khai ứng dụng GenAI trong quản lí tài sản tại Việt Nam, đặc biệt trong lĩnh vực tài chính - ngân hàng.

Từ khóa: GenAI, quản lí tài sản, phát triển thị trường

DEVELOPMENT OF GENERATIVE ARTIFICIAL INTELLIGENCE IN ASSET MANAGEMENT

Abstract: The emergence of artificial intelligence significantly changes the way people live and work. Generative artificial intelligence is considered a tool that can bring significant labor productivity growth in the coming decades. Within the scope of this article, the author researches and analyzes applications of generative artificial intelligence in the asset management industry in recent times, and challenges in the process of applying generative artificial intelligence. In addition, the article points out the limitations and causes in the process of applying artificial intelligence in the asset management industry in the Vietnamese market. The article also proposes some recommendations to deploy the application of generative artificial intelligence in the asset management industry in Vietnam.

Keywords: Generative artificial intelligence, asset management, market growth.

1. GenAI và ứng dụng trong quản lí tài sản

Các tổ chức quản lí và đánh giá tài sản đã đi đầu trong việc áp dụng công nghệ tiên tiến và nhiều tổ chức đã ứng dụng AI vào hoạt động kinh doanh cốt lõi. Tuy nhiên, dư địa để tận dụng thông tin phi cấu trúc lớn và phức tạp vẫn còn nhiều. GenAI, sự phát triển mới của các ứng dụng AI hứa hẹn sẽ mang lại hiệu suất vượt trội trong khi thực hiện các tác vụ tìm kiếm, truy xuất và tổng hợp thông tin với dữ liệu phi cấu trúc, cùng với khả năng sáng tạo nội dung (ví dụ, văn bản, hình ảnh, mã thông báo). Khả năng xử lí lượng thông tin lớn và tự tạo ra các nội dung thân thiện với con người đã truyền cảm hứng cho các doanh nghiệp phát triển mô hình kinh doanh mới và định vị doanh nghiệp trong tương lai, tạo ra giá trị cho tất cả các bên liên quan (khách hàng, nhân viên, cổ đông) và có tác động lâu dài đến xã hội.

GenAI có thể mang lại giá trị lớn cho các tổ chức quản lí tài sản trong những lĩnh vực sau:

- Triển khai giải pháp ứng dụng GenAI để hỗ trợ các cố vấn tài chính sẽ dẫn đến tương tác khách hàng có ý nghĩa hơn, tác động tích cực đến tăng trưởng kinh doanh thông qua khách hàng mới và gia tăng chi tiêu của khách hàng hiện tại. Ví dụ, tích hợp các nền tảng quản lí quan hệ khách hàng (CRM) để đưa ra các đề xuất hành động tốt nhất không chỉ giúp cải thiện việc tìm kiếm khách hàng tiềm năng và mang lại những cải tiến về năng suất. Những cải tiến như vậy sẽ là kết quả của khả năng tự động hóa các tác vụ quản trị thủ công với sự trợ giúp của GenAI. Chẳng hạn như chuẩn bị tài liệu trước và sau cuộc họp, chương trình nghị sự tự động hoặc theo dõi các sự kiện và cột mốc quan trọng cho khách hàng theo thời gian thực.

- Quản lí tài sản cũng đang trải qua sự thay đổi mang tính cách mạng bằng cách áp dụng AI, từ việc sử dụng các phân tích nâng cao để tối ưu hóa danh mục đầu tư, phân bổ tài sản và giao dịch thuật toán đến tăng cường các quy trình quản lí rủi ro. Với sự trợ giúp của AI, các nhà quản lí tài sản có thể xử lí một lượng lớn thông tin phi cấu trúc, cung cấp thông tin chi tiết và thông tin thị trường cho các nhà quản lí danh mục đầu tư theo thời gian thực để hỗ trợ nghiên cứu đầu tư và giúp họ đưa ra quyết định đầu tư sáng suốt dựa trên dữ liệu.

- GenAI có thể cho phép các nhà quản lí tài sản chủ động quản lí rủi ro bằng cách liên tục theo dõi các điều kiện thị trường, tin tức, tâm lí nhà đầu tư và cung cấp các tín hiệu cảnh báo sớm. Sự phát triển của chức năng hậu cần và trung gian (back and middle-office functions) giúp giảm chi phí hoặc cải thiện mức độ tương tác của khách hàng với công nghệ định danh khách hàng điện tử (e-KYC) trên các kênh tự phục vụ (self-service channel) hoặc tư vấn khách hàng có sự hỗ trợ của robot.

- Các chức năng bán hàng, tiếp thị và phân phối (SMD) được hưởng lợi từ khả năng tạo ra một sản phẩm tùy chỉnh hoặc nội dung tùy chỉnh theo GenAI. Điều này có thể bao gồm phản hồi yêu cầu đề xuất (RFP), tài liệu tiếp thị đa ngôn ngữ hoặc tài liệu pháp lí. Rủi ro và hoạt động tuân thủ tạo ra chi phí lớn trong SMD và việc tự động xem xét tuân thủ các tài liệu và nội dung khác nhau do cố vấn tài chính tạo ra có thể mang lại lợi thế quan trọng cho các tổ chức. Ngoài ra, các mô hình GenAI có thể được tích hợp với mô hình phân bổ thị trường và dữ liệu nguồn mở để tạo thông tin chi tiết về khách hàng được cá nhân hóa giúp đẩy mạnh hoạt động tiếp thị hoặc chuẩn bị nội dung cho các cuộc họp.

GenAI giúp tăng cường hoạt động dịch vụ thông qua hỗ trợ kiến thức hoặc số hóa các quy trình hạ nguồn (downstream processes). Trong trung hạn, GenAI sẽ hỗ trợ các hoạt động với trợ lí ảo và hỗ trợ màn hình giúp các cố vấn tài chính trong những tương tác phức tạp. Cuối cùng, GenAI sẽ cho phép các hoạt động tự động, có thể xử lí phần lớn các giao dịch và yêu cầu thực hiện dựa trên nền tảng kĩ thuật số.

2. Thực trạng ứng dụng GenAI trong quản lí tài sản trên thế giới và Việt Nam

GenAI tạo động lực tăng trưởng mới cho lĩnh vực tài chính - ngân hàng. Theo Precedence Research (2023), quy mô thị trường GenAI trong lĩnh vực tài chính - ngân hàng toàn cầu đạt khoảng 712,4 triệu USD vào năm 2022 và dự kiến sẽ chạm mốc 12.337,87 triệu USD năm 2032, với tốc độ tăng trưởng kép hằng năm (CAGR) là 33% trong giai đoạn 2023 - 2032. (Hình 1)

Hình 1: Tăng trưởng thị trường GenAI trong ngành tài chính - ngân hàng

Đơn vị: Triệu USD

Nguồn: www.precedenceresearch.com


Để hiểu rõ hơn cách các ngân hàng thương mại và công ty tài chính toàn cầu đang triển khai các ứng dụng GenAI, nhóm nghiên cứu về AI của Công ty EY (EY-Parthenon) đã thực hiện cuộc khảo sát vào tháng 7/2023. Đối tượng tham gia cuộc khảo sát bao gồm các ngân hàng toàn cầu, ngân hàng khu vực trong phân khúc ngân hàng bán lẻ, công ty tài chính, thương mại và doanh nghiệp nhỏ và vừa (SME). Những người được hỏi có kiến thức về GenAI, tham gia vào các nhóm phát triển và triển khai GenAI, với chuyên môn cụ thể về các ứng dụng GenAI bao gồm ChatGPT, Dall-E, OpenAI và Microsoft Azure.

GenAI có thể tạo ra sự tăng trưởng lợi nhuận, hiệu quả cho các ngân hàng, công ty tài chính, thương mại và SME tham gia khảo sát. Theo khảo sát, 78% các tổ chức cho rằng, cải thiện năng suất là động lực cơ bản cho triển khai GenAI; 60% tìm kiếm cơ hội gia tăng trải nghiệm khách hàng và giảm chi phí (Hình 2). Các hoạt động cải tiến tập trung ở bộ phận hậu cần (back office) với 60% ý kiến ủng hộ việc chấp nhận rủi ro và thay đổi hướng tới gia tăng lợi ích tối đa cho các tổ chức. Hoạt động đầu tư vào GenAI được tiến hành chủ yếu ở tổ chức quy mô lớn, với hơn 75% các tổ chức quy mô lớn đang thực hiện quá trình thử nghiệm, trong đó hoạt động này được thực hiện bởi dưới 50% các tổ chức quy mô nhỏ.

Hình 2: Các lợi ích do GenAI mang lại trong lĩnh vực tài chính - ngân hàng

Nguồn: Báo cáo nghiên cứu của EY, 2023


Các tổ chức được khảo sát đang ưu tiên ứng dụng với sự tập trung vào trải nghiệm của khách hàng, quản lí rủi ro và tạo doanh thu. Theo đó, 47% ưu tiên các cơ hội tạo doanh thu mới; 48% ưu tiên đề xuất sản phẩm được cá nhân hóa; 69% coi phát hiện gian lận theo thời gian thực là khoản đầu tư quan trọng và 75% ưu tiên các trường hợp sử dụng công cụ phát hiện rủi ro như hoạt động rửa tiền.

Tại Việt Nam, Chính phủ đã có nhiều chính sách nhằm tăng cường ứng dụng và hỗ trợ các doanh nghiệp khởi nghiệp trong lĩnh vực AI, GenAI. Thủ tướng Chính phủ đã kí Quyết định số 127/QĐ-TTg ngày 26/01/2021 ban hành Chiến lược quốc gia về nghiên cứu, phát triển và ứng dụng AI đến năm 2030. Chiến lược đưa ra mục tiêu “đẩy mạnh nghiên cứu, phát triển và ứng dụng AI, đưa AI trở thành lĩnh vực công nghệ quan trọng của Việt Nam trong cuộc Cách mạng công nghiệp lần thứ tư”, góp phần phát triển kinh tế - xã hội và từng bước đưa Việt Nam trở thành điểm sáng về nghiên cứu, phát triển và ứng dụng AI trong khu vực và trên thế giới. Về phía ngành Ngân hàng, Thống đốc Ngân hàng Nhà nước Việt Nam (NHNN) đã ban hành Quyết định số 810/QĐ-NHNN ngày 11/5/2021 phê duyệt Kế hoạch Chuyển đổi số ngành Ngân hàng đến năm 2025, định hướng đến năm 2030. Đây là một bước quan trọng trong việc thúc đẩy sự phát triển của ngành Ngân hàng và tạo ra sự chuyển đổi số hiệu quả. Bên cạnh đó, NHNN đang nghiên cứu, tiếp thu ý kiến các bộ, ngành và ý kiến của Văn phòng Chính phủ để xây dựng dự thảo Nghị định về Cơ chế quản lý thử nghiệm hoạt động Fintech trong lĩnh vực ngân hàng. Việc soạn thảo Nghị định này được NHNN khởi động từ năm 2021.

Trong lĩnh vực ngân hàng, với việc ứng dụng AI, các ngân hàng đang ngày càng đổi mới mô hình kinh doanh và nâng cao trải nghiệm khách hàng. Các ngân hàng đang sử dụng trợ lí AI như Chatbot để đưa ra lời khuyên tài chính được cá nhân hóa và xử lí ngôn ngữ tự nhiên nhằm cung cấp dịch vụ khách hàng tự phục vụ. Các giải pháp AI đang giúp ngân hàng và người cho vay đưa ra quyết định cho vay bằng cách sử dụng nhiều yếu tố giúp đánh giá chính xác hơn những phương pháp truyền thống. Các ngân hàng chuyển sang sử dụng máy học (Machine Learning - ML), một tập hợp con của AI để xây dựng các mô hình dự báo chính xác hơn, nhanh chóng hơn. Những dự đoán này giúp các ngân hàng tận dụng dữ liệu hiện có để xác định xu hướng, xác định rủi ro, tiết kiệm nhân lực và đảm bảo thông tin tốt hơn cho việc lập kế hoạch trong tương lai.

Trong lĩnh vực quản lí tài sản và tài chính cá nhân tại Việt Nam, các ứng dụng GenAI trong cung ứng dịch vụ còn nhiều hạn chế, như hạn chế về nguồn vốn và pháp lí, bảo mật thông tin, thiếu nhân lực chuyên môn, thiếu sự đầu tư một cách hệ thống về cơ sở hạ tầng công nghệ, thiếu sự phối hợp giữa doanh nghiệp, nhà nghiên cứu và Chính phủ. Một số ứng dụng AI, GenAI trong quản lí tài sản có thể kể đến như kết hợp AI cho phép thực hiện quản lí lựa chọn tài sản, tối ưu hóa danh mục đầu tư. Các ngân hàng dựa vào hệ thống AI và ML để hỗ trợ và nâng cao hiệu quả hoạt động. Hệ thống cho phép giảm chi phí giao dịch và cá nhân hóa danh mục đầu tư cho từng khách hàng. Các ngân hàng, công ty tài chính cũng có thể sử dụng ứng dụng của AI tư vấn khách hàng, giúp quản lí tốt hơn dòng tiền dựa trên ghi nhận giao dịch. Đối với người dùng, nếu không thể đến ngân hàng thường xuyên, họ có thể quản lí dịch vụ ngân hàng và thực hiện hoạt động quản lí dòng tiền cá nhân thông qua ứng dụng ngân hàng di động có kết hợp AI.

3. Thách thức trong triển khai ứng dụng GenAI và khuyến nghị

Việc áp dụng GenAI trong thực tiễn đặt ra nhiều thách thức. Đó là làm thế nào để mở rộng quy mô một cách an toàn, nhanh chóng? Mặc dù tác động sẽ rất đa dạng, từ chiến lược kinh doanh và thương hiệu của tổ chức đến chính sách, thủ tục, rủi ro, quản trị, dữ liệu, công nghệ và nguồn nhân lực, các tổ chức sẽ cần nắm lấy cách tiếp cận toàn diện để vận hành và áp dụng GenAI. Để tận dụng tối đa lợi ích của GenAI và quản lí rủi ro, các tổ chức tài chính, ngân hàng cần phải thực hiện các nội dung có tính nền tảng như:

- Hài hòa chiến lược phát triển AI trong doanh nghiệp với GenAI là một bước quan trọng. Các tổ chức cần tăng cường hợp tác giữa các bộ phận cấu thành để xác định ưu tiên trong ứng dụng GenAI, cùng với việc định lượng hiệu quả theo KPI và tác động tới hiệu suất đầu tư (ROI). Ngoài ra, thiết lập các cẩm nang và mô hình hoạt động bao gồm quản trị, kiểm soát các cấp độ rủi ro và mô hình công nghệ khác nhau sẽ giúp các tổ chức theo dõi việc triển khai mô hình GenAI.

- Các tổ chức nên đầu tư vào cơ sở hạ tầng để mở rộng năng lực, chẳng hạn như nền tảng dựa trên đám mây, tài nguyên điện toán, khung phần mềm hoặc quan hệ đối tác với nhà cung cấp. Hầu hết các công ty dịch vụ tài chính đã đầu tư đáng kể vào các lĩnh vực này, nhưng cần được mở rộng hơn nữa để triển khai ứng dụng GenAI. Thiết lập các nền tảng công nghệ có thể mở rộng với khả năng chạy trên cả dữ liệu có cấu trúc và phi cấu trúc, cùng với cấu trúc hệ thống công nghệ thông tin thích ứng để hỗ trợ nhiều mô hình ngôn ngữ lớn. Ngoài ra, việc phát triển một quy trình hoạt động mô hình ngôn ngữ lớn với khả năng giám sát nâng cao là nhân tố quan trọng để vận hành các mô hình này.

- Rủi ro và quản trị là những nhân tố quan trọng mà các công ty cần đầu tư nguồn lực khi bắt tay vào hành trình ứng dụng GenAI. Với những rủi ro có thể xảy ra do áp dụng GenAI, chẳng hạn như ảo giác trong một số trường hợp, thiên vị vốn có và thiếu khả năng giải thích, các tổ chức cần thay đổi chính sách và quy tắc. Mặc dù không có hướng dẫn quy định chính thức về GenAI, các công ty nên xem xét hướng dẫn AI hiện có, chẳng hạn như các tiêu chuẩn trong Hướng dẫn về Quản lí rủi ro mô hình (SR 11-7) của Cục Dự trữ Liên bang Hoa Kỳ, hay tính đến rủi ro từ việc sử dụng mô hình ngôn ngữ lớn bao gồm rủi ro pháp lí, rủi ro danh tiếng và tài chính.

- Các tổ chức tài chính cần bắt tay vào việc cập nhật tiêu chuẩn dữ liệu và nâng cấp cơ sở dữ liệu hiện có để đảm bảo khả năng truy cập. Các mô hình sử dụng nhiều dữ liệu và tổ chức muốn triển khai AI một cách có trách nhiệm thì cần đầu tư vào dữ liệu đáng tin cậy và bền vững. Chiến lược quản lí dữ liệu cần tính đến các rủi ro mới như vi phạm bản quyền, đầu vào và dữ liệu được tạo ra. Hiệu quả sử dụng mô hình sẽ tăng lên khi chúng được chạy trên miền hoặc dữ liệu cụ thể theo trường hợp sử dụng. Các công ty có thể chọn từ nhiều tùy chọn mô hình ngôn ngữ lớn mã nguồn đóng hoặc mã nguồn mở, cùng với các sản phẩm nhà cung cấp dựa trên mô hình ngôn ngữ lớn. Các tổ chức tài chính, doanh nghiệp cần khám phá và xác định các mô hình phù hợp để sử dụng trong khi tối ưu hóa chi phí hoạt động, rủi ro và hiệu năng; cần thành lập các trung tâm hoặc phòng thí nghiệm AI để liên tục thử nghiệm các công nghệ khác nhau.

- Sự sẵn sàng của lực lượng lao động là một nhân tố quan trọng khác trong việc áp dụng công nghệ tiên tiến. Để tối ưu toàn bộ tiềm năng và tối đa hóa hiệu suất đầu tư cho GenAI, các tổ chức tài chính, doanh nghiệp cần nâng cao kĩ năng cho người dùng GenAI với việc đào tạo tập trung cũng như xây dựng năng lực kĩ thuật để triển khai các ứng dụng hỗ trợ GenAI. Tóm lại, các nhà quản lí tài sản cần thận trọng khi triển khai công nghệ GenAI vì đây là một lĩnh vực được quản lí chặt chẽ. Nhiều vấn đề cần xem xét xoay quanh rủi ro tiềm ẩn đối với tổ chức, bao gồm cả việc áp dụng GenAI quá rộng và quá sớm, bên cạnh chi phí xây dựng và vận hành các giải pháp công nghệ này. Để đạt được điều đó, các tổ chức tài chính, ngân hàng cần có cách tiếp cận thực tế để thực hiện và tích lũy kinh nghiệm với những trường hợp sử dụng, nếu không sẽ chịu hậu quả do không xác định rõ ràng khung kiểm tra hiệu suất, giải pháp thiết kế, các thành phần công nghệ và cấu trúc nền tảng công nghệ thông tin. Điều quan trọng là nên xem xét các rủi ro về uy tín, quyền riêng tư, pháp lí, phát triển một khuôn khổ quản trị và rủi ro trước khi bắt tay vào triển khai toàn diện.

Bên cạnh đó, để tăng cường ứng dụng AI, GenAI trong lĩnh vực tài chính, ngân hàng nói chung và vấn đề quản lí tài sản nói riêng, Chính phủ có thể tập trung vào một số biện pháp như sau:

Thứ nhất, phát triển nguồn nhân lực về AI. Các trường đại học, viện nghiên cứu cần xây dựng các chương trình đào tạo về AI, đồng thời phát triển các khóa học giúp tăng cường kĩ năng, kiến thức về AI. Đối với lĩnh vực tài chính, ngân hàng, các trường đại học nên phát triển các chương trình đào tạo tài chính có ứng dụng công nghệ mới như Fintech, phân tích dữ liệu tài chính.

Thứ hai, cần sự đầu tư có quy mô và toàn diện về cơ sở hạ tầng công nghệ để triển khai AI, về nghiên cứu khoa học cũng như những đầu tư cho các doanh nghiệp, đặc biệt là các công ty khởi nghiệp hoạt động trong lĩnh vực này. Đối với hạ tầng công nghệ cần đẩy mạnh việc hợp tác giữa các định chế tài chính, ngân hàng, là người sử dụng đầu ra cuối cùng và các doanh nghiệp chuyên biệt cung cấp cơ sở hạ tầng kĩ thuật và dịch vụ công nghệ cao. Không chỉ dừng lại ở sự hợp tác mà việc tạo ra một hệ sinh thái các doanh nghiệp chuyên cung cấp dịch vụ và công nghệ trong lĩnh vực AI là điều rất cần thiết.

Cuối cùng, xây dựng cơ sở dữ liệu quốc gia làm nền tảng để triển khai các ứng dụng AI, GenAI. Hiện nay, Chính phủ và các bộ, ngành đang hoàn thiện bộ cơ sở dữ liệu về dân cư, việc làm, đất đai và nhà ở... Chính phủ đã ban hành một số quyết định về cơ sở dữ liệu quốc gia như Quyết định số 06/QĐ-TTg ngày 06/01/2022 của Thủ tướng Chính phủ phê duyệt Đề án phát triển ứng dụng dữ liệu về dân cư, định danh và xác thực điện tử phục vụ chuyển đổi số quốc gia giai đoạn 2022 - 2025, tầm nhìn đến năm 2030 và hiện thực hóa các mục tiêu tại Chương trình “Chuyển đổi số quốc gia đến năm 2025, định hướng đến năm 2030” theo Quyết định số 749/QĐ-TTg ngày 03/6/2020 của Thủ tướng Chính phủ hướng đến nền kinh tế số, xã hội số. Tuy nhiên các hệ thống cơ sở dữ liệu về dân cư, đất đai, việc làm - thu nhập chưa đầy đủ và thiếu sự kết nối. Do đó, các hệ thống cơ sở dữ liệu trong thời gian tới cần được hoàn thiện đầy đủ, chính xác và liên thông nhằm phục vụ tốt nhất nhu cầu của doanh nghiệp và người dân.

4. Kết luận

AI nói chung và GenAI nói riêng có một vai trò quan trọng trong vấn đề quản lí tài sản ngành tài chính, ngân hàng thông qua khả năng phát triển các mô hình dự đoán và phân tích dữ liệu để đánh giá rủi ro, dự đoán xu hướng thị trường và tối ưu hóa quản lí tài sản. Bên cạnh đó, có thể phát triển các hệ thống tự động hóa thông qua việc sử dụng ML và học sâu để tự động hóa quy trình quản lí tài sản đầu tư. Điều này có thể giúp giảm chi phí và tăng tính hiệu quả trong việc quản lí các danh mục đầu tư. Tuy nhiên việc ứng dụng AI trong quản lí tài sản cũng gặp phải một số hạn chế như nền tảng pháp lí cho AI, hạ tầng công nghệ thông tin, nguồn nhân lực và cơ sở dữ liệu. Do vậy, để tăng cường ứng dụng AI và GenAI trong quản lí tài sản của các tổ chức, doanh nghiệp, Chính phủ có thể áp dụng các biện pháp nhằm hoàn thiện nền tảng về luật pháp liên quan tới AI, xây dựng cơ sở hạ tầng công nghệ thông tin, nguồn nhân lực và cơ sở dữ liệu về dân cư, đất đai, nhà ở.

Tài liệu tham khảo:

1. CFA Institute (2022), Ethics and Artificial Intelligence in Investment Management: A Framework for Professionals.

2. Chuc, N. D., & Anh, D. T. (2023). Digital Transformation in Vietnam. Journal of Southeast Asian Economies, 40(1), pages 127-144. https://cafef.vn/phat-trien-tri-tue-nhan-tao-can-chinh-sach-dac-thu-188240217154709189.chn

3. EY report (2023), The transformation imperative: Generative AI in wealth and asset Management.

4. Giudici, P., & Raffinetti, E. (2023). SAFE Artificial Intelligence in finance. Finance Research Letters, 56, 104088.

5. Huang, Z., Che, C., Zheng, H., & Li, C. (2024). Research on Generative Artificial Intelligence for Virtual Financial Robo-Advisor. Academic Journal of Science and Technology, 10(1), trang 74-80.

6. Quyết định số 127/QĐ-TTg ngày 26/01/2021 của Thủ tướng Chính phủ: Ban hành Chiến lược quốc gia về nghiên cứu, phát triển và ứng dụng trí tuệ nhân tạo đến năm 2030.


Lê Thanh Phương

Khoa Kinh tế và Quản lý, Trường Đại học Thủy lợi

https://tapchinganhang.gov.vn

Tin bài khác

Ngành Ngân hàng tiên phong ứng dụng khoa học, công nghệ, góp phần chuyển đổi số quốc gia

Ngành Ngân hàng tiên phong ứng dụng khoa học, công nghệ, góp phần chuyển đổi số quốc gia

Nghị quyết số 57-NQ/TW ngày 22/12/2024 của Bộ Chính trị về đột phá phát triển khoa học, công nghệ, đổi mới sáng tạo và chuyển đổi số quốc gia (Nghị quyết 57), là một trong “Bộ tứ chiến lược” hướng đến mang lại sản phẩm tiện tích cho người dân, doanh nghiệp, góp phần tăng trưởng kinh tế số, giúp đất nước cất cánh trong thời gian tới. Là ngành tiên phong trong chuyển đổi số, ngành Ngân hàng đã tích cực triển khai Nghị quyết 57, lấy người dân, doanh nghiệp là trung tâm, là động lực, chủ thể cho sự phát triển.
Ứng dụng mô hình Q-Learning để cải thiện hiệu quả quy trình cấp tín dụng

Ứng dụng mô hình Q-Learning để cải thiện hiệu quả quy trình cấp tín dụng

Bài toán cấp tín dụng là một trong những vấn đề trọng yếu trong lĩnh vực tài chính - ngân hàng, đặc biệt đối với các tổ chức tín dụng, công ty tài chính hoặc các nền tảng cho vay ngang hàng. Mục tiêu của bài toán này là đánh giá rủi ro tín dụng của từng khách hàng tiềm năng, từ đó đưa ra quyết định liệu có nên cấp tín dụng hay không, nếu có thì với điều kiện như thế nào. Trong thực tế, việc đưa ra quyết định cấp tín dụng không chỉ đơn thuần là lựa chọn giữa “cấp” hay “không cấp”, mà là một quá trình ra quyết định phức tạp, cần cân bằng giữa rủi ro tiềm ẩn và lợi nhuận kỳ vọng. Một quyết định sai lầm, ví dụ như cấp tín dụng cho khách hàng có khả năng vỡ nợ, có thể dẫn đến tổn thất tài chính nghiêm trọng. Ngược lại, từ chối một khách hàng có khả năng hoàn trả tốt cũng là bỏ lỡ cơ hội sinh lời.
Metaverse ngân hàng và dịch vụ tài chính nhập vai - Kinh nghiệm quốc tế và một số khuyến nghị

Metaverse ngân hàng và dịch vụ tài chính nhập vai - Kinh nghiệm quốc tế và một số khuyến nghị

Metaverse ngân hàng và dịch vụ tài chính nhập vai là xu hướng mới đầy tiềm năng, hứa hẹn tái định nghĩa trải nghiệm ngân hàng trong kỷ nguyên số.
Ứng dụng và tiềm năng của bản sao số khách hàng trong ngành Ngân hàng

Ứng dụng và tiềm năng của bản sao số khách hàng trong ngành Ngân hàng

Sự xuất hiện của bản sao số khách hàng đánh dấu bước chuyển đổi căn bản trong ngành Ngân hàng, từ mô hình quản lý khách hàng phản ứng sang chiến lược chủ động dựa trên dự đoán và tương tác cá nhân hóa sâu. Bằng cách xây dựng các mô hình ảo động, bản sao số khách hàng cho phép ngân hàng mô phỏng hành vi, dự báo nhu cầu và phân tích động lực đằng sau quyết định tài chính của từng cá nhân. Giá trị cốt lõi của bản sao số khách hàng nằm ở khả năng siêu cá nhân hóa dịch vụ, thúc đẩy lòng trung thành và tối ưu hóa giá trị vòng đời khách hàng, đồng thời nâng cao hiệu quả hoạt động, quản lý rủi ro và đổi mới sản phẩm.
Vai trò của trí tuệ nhân tạo và học máy đối với phát hiện gian lận tài chính trong ngân hàng số

Vai trò của trí tuệ nhân tạo và học máy đối với phát hiện gian lận tài chính trong ngân hàng số

Bài nghiên cứu này đã nêu rõ vai trò chuyển đổi của trí tuệ nhân tạo và học máy trong phát hiện gian lận, nhấn mạnh khả năng phân tích tập dữ liệu giao dịch khổng lồ, xác định các điểm bất thường và tăng cường bảo mật ngân hàng số... Việc trí tuệ nhân tạo và học máy được áp dụng rộng rãi sẽ phụ thuộc vào cách các tổ chức tài chính điều chỉnh chiến lược của mình để thích ứng hiệu quả hơn với các mô hình đang ngày càng được quản lý chặt chẽ hơn bởi các quy định. Sự thành công của trí tuệ nhân tạo và học máy trong phát hiện gian lận sẽ được quyết định bởi việc đổi mới công nghệ, chia sẻ thông tin tình báo về gian lận và các biện pháp quy định nhằm cân bằng giữa đạo đức trong việc sử dụng trí tuệ nhân tạo trong ngân hàng số.
Chuyển đổi số ngành Ngân hàng Việt Nam: Bứt phá trong kỷ nguyên mới

Chuyển đổi số ngành Ngân hàng Việt Nam: Bứt phá trong kỷ nguyên mới

Bài viết đề cập đến vai trò then chốt của ngành Ngân hàng trong kỷ nguyên phát triển mới của đất nước dưới sự lãnh đạo của Đảng, đặc biệt trong bối cảnh chuyển đổi số toàn diện và xu thế toàn cầu hóa. Ngân hàng Nhà nước Việt Nam đã tích cực triển khai nhiều chiến lược thúc đẩy chuyển đổi số, hiện đại hóa hoạt động toàn ngành. Bài viết đồng thời phân tích nhiệm vụ, thành tựu, khó khăn trong quá trình này và đề xuất giải pháp giúp ngành Ngân hàng thực hiện sứ mệnh phát triển trong thời kỳ mới.
Thực trạng bảo vệ dữ liệu cá nhân trong thương mại điện tử và một số kiến nghị

Thực trạng bảo vệ dữ liệu cá nhân trong thương mại điện tử và một số kiến nghị

Thương mại điện tử phát triển mạnh sau đại dịch Covid-19 nhưng kéo theo nhiều rủi ro về bảo mật thông tin và dữ liệu cá nhân, gây ra tình trạng xâm phạm, đánh cắp dữ liệu và gia tăng tội phạm mạng. Do đó, việc bảo vệ dữ liệu cá nhân trở thành yêu cầu cấp thiết trong bối cảnh kinh tế số. Bài viết phân tích thực trạng bảo vệ dữ liệu, chỉ ra những hạn chế và đề xuất giải pháp hoàn thiện.
Phát triển ngân hàng số  và thanh toán không dùng tiền mặt  tại Phú Yên giai đoạn 2022 - 2024

Phát triển ngân hàng số và thanh toán không dùng tiền mặt tại Phú Yên giai đoạn 2022 - 2024

Nghiên cứu phân tích sự bùng nổ của ngân hàng số và thanh toán không dùng tiền mặt tại Phú Yên giai đoạn 2022 - 2024, với sự tăng trưởng mạnh về số lượng khách hàng, giao dịch và chuyển dịch sang kênh điện tử. Động lực là sự phối hợp giữa chính sách, đổi mới từ ngân hàng, công nghệ và sự hưởng ứng của người dân. Nghiên cứu kết luận giai đoạn này góp phần thúc đẩy chuyển đổi số và đề xuất giải pháp duy trì tăng trưởng, khắc phục thách thức về an ninh và khoảng cách số.
Xem thêm
Hoạt động của ngân hàng chính sách trong cơ chế thị trường: Từ pháp luật đến thực tiễn thi hành

Hoạt động của ngân hàng chính sách trong cơ chế thị trường: Từ pháp luật đến thực tiễn thi hành

Tín dụng chính sách xã hội đã góp phần quan trọng vào việc giúp đỡ, khuyến khích các đối tượng chính sách xã hội vươn lên thoát nghèo, từng bước làm giàu chính đáng, là chủ trương đúng đắn, sáng tạo, có tính nhân văn sâu sắc, qua đó, góp phần thực hiện tốt các chủ trương, chính sách, mục tiêu, nhiệm vụ của Đảng, Nhà nước về tăng trưởng kinh tế đi đôi với thực hiện tiến bộ và công bằng xã hội, là yêu cầu có tính nguyên tắc bảo đảm sự phát triển lành mạnh, bền vững của đất nước theo định hướng xã hội chủ nghĩa, thể hiện tính ưu việt của chế độ ta, được các tổ chức quốc tế đánh giá cao.
Khuôn khổ pháp lý liên quan đến việc sử dụng tài sản số, tín chỉ carbon làm tài sản bảo đảm ngân hàng tại Việt Nam

Khuôn khổ pháp lý liên quan đến việc sử dụng tài sản số, tín chỉ carbon làm tài sản bảo đảm ngân hàng tại Việt Nam

Tài sản số và tín chỉ carbon đang mở ra những cơ hội mới cho hệ thống ngân hàng Việt Nam, từ việc đa dạng hóa tài sản bảo đảm đến thúc đẩy phát triển bền vững và đổi mới tài chính. Với tiềm năng lớn về nguồn cung tín chỉ carbon và sự phát triển của nền kinh tế số, Việt Nam có thể tận dụng các loại tài sản này để hỗ trợ mục tiêu Net Zero vào năm 2050 và tăng cường khả năng cạnh tranh trên thị trường quốc tế. Tuy nhiên, những rào cản về pháp lý, công nghệ và quản lý rủi ro hiện nay đang hạn chế khả năng ứng dụng của tài sản số, tín chỉ carbon. Việc hoàn thiện khung pháp lý, phát triển cơ sở hạ tầng công nghệ, nâng cao năng lực quản lý và thúc đẩy hợp tác quốc tế là chìa khóa để giải quyết các thách thức này.
Để đồng thuận xã hội chuyển đổi thuế hộ kinh doanh

Để đồng thuận xã hội chuyển đổi thuế hộ kinh doanh

Quán triệt Nghị quyết số 68-NQ/TW về phát triển kinh tế tư nhân, Thủ tướng Phạm Minh Chính kêu gọi tạo động lực làm giàu trong toàn dân để phục vụ sự nghiệp xây dựng và bảo vệ Tổ quốc. Theo Nghị quyết, từ năm 2026, Việt Nam sẽ chấm dứt cơ chế thuế khoán với hộ kinh doanh, chuyển sang cơ chế tự kê khai và nộp thuế theo doanh thu thực tế, đồng thời đẩy mạnh thu thuế điện tử.
Phản ứng chính sách của Fed và BPoC trước xung đột thương mại Mỹ - Trung Quốc

Phản ứng chính sách của Fed và BPoC trước xung đột thương mại Mỹ - Trung Quốc

Xung đột thương mại Mỹ - Trung Quốc là một minh họa hậu quả sâu rộng của các xung đột thương mại. Tác động của nó còn vượt ra ngoài phạm vi hai nước này, khi các nền kinh tế phụ thuộc như Canada và Mexico cũng phải đối mặt với nguy cơ suy thoái tiềm ẩn. Tuy nhiên, một số quốc gia lại tìm thấy cơ hội phát triển khi xung đột thương mại Mỹ - Trung Quốc xảy ra do sở hữu khả năng thay thế hàng hóa xuất khẩu bị ảnh hưởng bởi thuế quan giữa hai quốc gia trên. Điều này phản ánh cách thức phức tạp và khó lường mà xung đột thương mại có thể định hình lại dòng chảy thương mại toàn cầu.
Pháp luật về bảo vệ dữ liệu cá nhân trong lĩnh vực ngân hàng tại một số quốc gia  và bài học kinh nghiệm cho Việt Nam

Pháp luật về bảo vệ dữ liệu cá nhân trong lĩnh vực ngân hàng tại một số quốc gia và bài học kinh nghiệm cho Việt Nam

Trong xu hướng phát triển nền kinh tế số, các giao dịch thường xuyên được thực hiện qua phương thức trực tuyến từ dịch vụ công đến các dịch vụ tài chính, cũng từ đó, rủi ro về bảo mật thông tin ngày càng trở nên nghiêm trọng, đặc biệt đối với các quốc gia đang phát triển. Các thông tin dữ liệu nói chung và thông tin dữ liệu cá nhân nói riêng là những vấn đề quan trọng trong các quan hệ xã hội và cần được bảo vệ như những quyền lợi chính đáng của con người.
Vị thế của đô la Mỹ trên thị trường tài chính toàn cầu

Vị thế của đô la Mỹ trên thị trường tài chính toàn cầu

Tháng 4/2025 chứng kiến cuộc khủng hoảng niềm tin nghiêm trọng đối với đồng USD, bất chấp lợi suất trái phiếu Mỹ tăng. Bài viết phân tích những bất thường trên thị trường tài chính toàn cầu sau các biện pháp thuế quan gây tranh cãi của Mỹ, đồng thời chỉ ra nguyên nhân từ sự thay đổi cấu trúc tài chính, phi toàn cầu hóa và biến động địa chính trị. Nếu xu hướng này tiếp diễn, USD có nguy cơ mất dần vị thế, đe dọa sự ổn định của hệ thống tài chính thế giới.
Kinh nghiệm quốc tế về áp dụng Hiệp ước vốn Basel III  trong hoạt động ngân hàng và khuyến nghị cho Việt Nam

Kinh nghiệm quốc tế về áp dụng Hiệp ước vốn Basel III trong hoạt động ngân hàng và khuyến nghị cho Việt Nam

Hiệp ước vốn Basel III là khuôn khổ nâng cao với sự sửa đổi và củng cố cả ba trụ cột của Basel II, đây là công cụ hỗ trợ đắc lực để nâng cao chất lượng quản trị rủi ro và năng lực cạnh tranh của các ngân hàng. Bài viết phân tích tình hình áp dụng các Hiệp ước vốn Basel của hệ thống ngân hàng trên thế giới, cùng với kinh nghiệm quốc tế và thực tiễn tại Việt Nam trong việc áp dụng Hiệp ước vốn Basel III, tác giả đưa ra một số đề xuất giải pháp chính sách cho hệ thống ngân hàng...
Hiểu biết tài chính và truyền tải chính sách tiền tệ: Kinh nghiệm từ Ngân hàng Trung ương châu Âu và một số khuyến nghị

Hiểu biết tài chính và truyền tải chính sách tiền tệ: Kinh nghiệm từ Ngân hàng Trung ương châu Âu và một số khuyến nghị

Bài viết phân tích vai trò của hiểu biết tài chính trong việc truyền dẫn chính sách tiền tệ, dựa trên khảo sát của Ngân hàng Trung ương châu Âu; đồng thời, đề xuất tăng cường giáo dục và truyền thông tài chính để hỗ trợ chính sách tiền tệ và phát triển kinh tế bền vững.
Giải mã bẫy thu nhập trung bình: Kinh nghiệm Đông Á và một số khuyến nghị chính sách

Giải mã bẫy thu nhập trung bình: Kinh nghiệm Đông Á và một số khuyến nghị chính sách

Bài viết này tổng hợp bài học từ các nền kinh tế đã thành công vượt qua "bẫy thu nhập trung bình" như Hàn Quốc, Singapore, Đài Loan (Trung Quốc), Malaysia và Trung Quốc. Trên cơ sở đó, tác giả nêu một số khuyến nghị chính sách đối với Việt Nam nhằm duy trì đà tăng trưởng, tránh rơi vào “bẫy” và hướng tới mục tiêu thu nhập cao vào năm 2045.
Kinh tế vĩ mô thế giới và trong nước các tháng đầu năm 2025: Rủi ro, thách thức và một số đề xuất, kiến nghị

Kinh tế vĩ mô thế giới và trong nước các tháng đầu năm 2025: Rủi ro, thách thức và một số đề xuất, kiến nghị

Việt Nam đã đặt mục tiêu tăng trưởng GDP năm 2025 đạt 8% trở lên, nhằm tạo nền tảng vững chắc cho giai đoạn tăng trưởng hai con số từ năm 2026. Đây là một mục tiêu đầy thách thức, khó khăn, đặc biệt trong bối cảnh kinh tế toàn cầu còn nhiều bất định và tăng trưởng khu vực đang có xu hướng chậm lại, cùng với việc Hoa Kỳ thực hiện áp thuế đối ứng với các đối tác thương mại, trong đó có Việt Nam. Mặc dù vậy, mục tiêu tăng trưởng kinh tế trên 8% năm 2025 vẫn có thể đạt được, với điều kiện phải có sự điều hành chính sách linh hoạt, đồng bộ và cải cách thể chế đủ mạnh để khơi thông các điểm nghẽn về đầu tư, năng suất và thị trường…

Thông tư số 10/2025/TT-NHNN quy định về tổ chức lại, thu hồi Giấy phép và thanh lý tài sản của quỹ tín dụng nhân dân

Thông tư số 07/2025/TT-NHNN Sửa đổi, bổ sung một số điều của Thông tư số 39/2024/TT-NHNN ngày 01 tháng 7 năm 2024 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về kiểm soát đặc biệt đối với tổ chức tín dụng

Thông tư số 08/2025/TT-NHNN Sửa đổi, bổ sung một số điều của Thông tư số 43/2015/TT-NHNN ngày 31 tháng 12 năm 2015 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về tổ chức và hoạt động của phòng giao dịch bưu điện trực thuộc Ngân hàng thương mại cổ phần Bưu điện Liên Việt, Thông tư số 29/2024/TT-NHNN ngày 28 tháng 6 năm 2024 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về quỹ tín dụng nhân dân và Thông tư số 32/2024/TT-NHNN ngày 30 tháng 6 năm 2024 của Thống đốc Ngân hàng Nhà nướ

Nghị định số 94/2025/NĐ-CP ngày 29 tháng 4 năm 2025 của Chính phủ quy định về Cơ chế thử nghiệm có kiểm soát trong lĩnh vực ngân hàng

Nghị định số 26/2025/NĐ-CP của Chính phủ ngày 24/02/2025 quy định chức năng, nhiệm vụ, quyền hạn và cơ cấu tổ chức của Ngân hàng Nhà nước Việt Nam

Thông tư số 59/2024/TT-NHNN ngày 31/12/2024 Sửa đổi, bổ sung một số điều của Thông tư số 12/2021/TT-NHNN ngày 30 tháng 7 của 2021 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về việc tổ chức tín dụng, chi nhánh ngân hàng nước ngoài mua, bán kỳ phiếu, tín phiếu, chứng chỉ tiền gửi, trái phiếu do tổ chức tín dụng, chi nhánh ngân hàng nước ngoài khác phát hành trong nước

Thông tư số 60/2024/TT-NHNN ngày 31/12/2024 Quy định về dịch vụ ngân quỹ cho tổ chức tín dụng, chi nhánh ngân hàng nước ngoài

Thông tư số 61/2024/TT-NHNN ngày 31/12/2024 Quy định về bảo lãnh ngân hàng

Thông tư số 62/2024/TT-NHNN ngày 31/12/2024 Quy định điều kiện, hồ sơ, thủ tục chấp thuận việc tổ chức lại ngân hàng thương mại, tổ chức tín dụng phi ngân hàng

Thông tư số 63/2024/TT-NHNN ngày 31/12/2024 Quy định về hồ sơ, thủ tục thu hồi Giấy phép và thanh lý tài sản của tổ chức tín dụng, chi nhánh ngân hàng nước ngoài; hồ sơ, thủ tục thu hồi Giấy phép văn phòng đại diện tại Việt Nam của tổ chức tín dụng nước ngoài, tổ chức nước ngoài khác có hoạt động ngân hàng