Trí tuệ nhân tạo trong các dịch vụ tài chính, ngân hàng - Cơ hội và thách thức

Công nghệ & ngân hàng số
Trí tuệ nhân tạo (Artificial Intelligence - AI) là công nghệ mới thuộc lĩnh vực khoa học máy tính. AI đã và đang nhanh chóng làm thay đổi động lực phát triển cho mọi lĩnh vực... Trí tuệ nhân tạo (Art...
aa

Trí tuệ nhân tạo (Artificial Intelligence - AI) là công nghệ mới thuộc lĩnh vực khoa học máy tính. AI đã và đang nhanh chóng làm thay đổi động lực phát triển cho mọi lĩnh vực...

Trí tuệ nhân tạo (Artificial Intelligence - AI) là công nghệ mới thuộc lĩnh vực khoa học máy tính. AI đã và đang nhanh chóng làm thay đổi động lực phát triển cho mọi lĩnh vực. Các khả năng mới nổi của AI đang được kết hợp và hình thành theo những cách bất ngờ, tạo ra những cơ hội, thách thức mới, đồng thời cũng tạo ra những mối đe dọa tiềm ẩn như tội phạm mạng và rủi ro tài chính vĩ mô. Bài viết đưa ra các tiềm năng mà AI có thể áp dụng trong lĩnh vực tài chính, ngân hàng; đồng thời đặt ra các trở ngại ngăn cản sự phát triển đồng bộ, từ đó, đưa ra đề xuất về tính bền vững của AI trong lĩnh vực tài chính, ngân hàng.

1. Khả năng ứng dụng của AI trong lĩnh vực tài chính, ngân hàng

Trí thông minh tự nhiên mà con người sở hữu là khả năng cảm nhận, hiểu, phân tích để đưa ra kết luận hợp lý hoặc giải quyết vấn đề và cuối cùng là học hỏi bằng kinh nghiệm của chính mình với mục tiêu cải thiện và phát triển. Những đặc điểm tương tự khi máy móc mô phỏng theo được gọi là AI và học máy.


AI, một thuật ngữ được đặt ra bởi nhà khoa học máy tính và nhận thức của Đại học Stanford (Mỹ), John McCarthy, đề cập đến đặc điểm của một cỗ máy bắt chước con người trong suy nghĩ và đưa ra một lựa chọn hợp lý nhằm đạt được một mục tiêu cụ thể. Ngoài việc phát triển và cách mạng hóa các lĩnh vực hàng không, chăm sóc sức khỏe, giao thông vận tải, giáo dục, chẩn đoán y tế, giao dịch điện tử, viễn thám, Robot và nhiều ngành khác, AI ngày càng được ngành dịch vụ tài chính, ngân hàng sử dụng trong khai thác dữ liệu, phân tích thị trường, kinh tế cá nhân, quản lý tài sản, bảo hiểm, chấm điểm tín dụng, cho vay bán lẻ, tự động hóa quy trình và nhiều lĩnh vực khác để nâng cao trải nghiệm của khách hàng.

AI vượt qua con người trong việc thu thập, phân tích dữ liệu để xác định các mô hình và đưa ra các dự đoán chính xác hơn cho tương lai, từ đó nâng cao hiệu quả dịch vụ của các ngân hàng. Một nghiên cứu gần đây của Hãng tư vấn PWC (Ấn Độ) đưa ra dự đoán, AI có tiềm năng chiếm khoảng 16 nghìn tỷ USD trong nền kinh tế toàn cầu và triển khai AI được ước tính sẽ tiết kiệm 1 nghìn tỷ USD cho ngành Ngân hàng vào năm 2030. Một số ứng dụng nổi bật của AI trong ngành dịch vụ tài chính, ngân hàng có thể kể đến:

- Các dịch vụ quản lý tài sản và danh mục đầu tư: Nhiệm vụ chính là hiểu được sự đánh đổi lợi nhuận, rủi ro, có thể tư vấn chứng khoán và quyết định tài sản nào sẽ mang lại lợi nhuận cao nhất. Điển hình trong việc áp dụng AI, có thể kể đến tập đoàn đầu tư lớn nhất thế giới BlackRock (Mỹ) với khối tài sản hơn 6 nghìn tỷ USD, có một phòng thí nghiệm AI chuyên dụng để hỗ trợ hoạt động. Ngân hàng Thụy Sĩ UBS đã cải tiến sàn giao dịch của mình bằng hai hệ thống AI mới: Hệ thống thứ nhất là xác định các mô hình giao dịch sau khi phân tích hàng loạt dữ liệu thị trường, tiếp đến, tư vấn các chiến lược giao dịch cho khách hàng để có lợi nhuận cao hơn; hệ thống thứ hai đề cập đến các sở thích phân bổ sau giao dịch của người dùng.

- Hỗ trợ khách hàng tự động và tài chính ảo thông qua Chatbots và cố vấn Robot: Các ngân hàng đang sử dụng trợ lý AI và các ứng dụng có liên quan như Revolut’s để cung cấp các dịch vụ tức thì cho khách hàng bằng cách sử dụng công nghệ trò chuyện thông minh với ứng dụng xử lý ngôn ngữ tự nhiên (Natural Language Processing - NLP) hoặc chuyển câu hỏi đến nhân viên hỗ trợ liên quan. Một số ngân hàng còn sử dụng hệ thống Camera thông minh tích hợp AI có khả năng ghi lại biểu cảm khuôn mặt của khách hàng để cung cấp phản hồi tức thì về trải nghiệm của họ. Ngoài ra, nhiều công ty dịch vụ tài chính đang cung cấp các nhà tư vấn Robot nhằm giúp khách hàng quản lý tốt hơn dòng tiền của họ. Thông qua cá nhân hóa, Chatbots và mô hình khách hàng cụ thể, những Robot tư vấn này có thể cung cấp những tư vấn chất lượng cao về các quyết định đầu tư và sẵn sàng cung cấp bất cứ khi nào khách hàng cần.

- Ứng dụng trong ngành Tài chính, Bảo hiểm, Ngân hàng theo hướng dữ liệu: Tại thời điểm giải quyết yêu cầu bồi thường, các công ty bảo hiểm cần biết càng nhiều thông tin về trình độ học vấn, sức khỏe, lối sống, tính cách... của khách hàng và hoàn cảnh được yêu cầu trong thời gian nhanh bằng cách thực hiện đồng thời nhiều quy trình Back End và kiểm tra trong khi tương tác với khách hàng ở Front End.

- Các bộ dữ liệu đã được xác minh là rất cần thiết cho các máy AI để phân tích dữ liệu: Mobile Banking App được hỗ trợ bởi công nghệ AI có thể thu thập dữ liệu của người dùng và tạo ra một quy trình học tập hành vi phù hợp để nâng cao trải nghiệm người dùng. Sau khi phân tích đúng dữ liệu, nó có thể mang lại cho người dùng trải nghiệm dịch vụ cá nhân hóa hơn.

- Hệ thống ngân hàng đang dần ứng dụng AI bằng cách sử dụng hệ thống thông minh, để giúp đưa ra quyết định đầu tư và hỗ trợ nghiên cứu: Hiện nay, công nghệ AI trong lĩnh vực ngân hàng đang tiếp tục chuyển đổi để cung cấp mức giá trị lớn hơn cho khách hàng, giảm rủi ro và tăng cơ hội làm công cụ tài chính cho nền kinh tế hiện đại. Ví dụ: Ngân hàng UBS (Thụy Sĩ) hay ING (Hà Lan) đang ứng dụng hệ thống AI rà soát thị trường để thông báo cho các hệ thống giao dịch thuật toán của họ.

- Tự động hóa quy trình bằng Robot RPA (Robotic Process Automation): Các quy trình gồm xử lý rút tiền và gửi tiền, tạo bảng sao kê, thanh toán bù trừ... có thể được thực thi tốt hơn bởi phần mềm AI như phần mềm tự động hóa RPA để tăng năng suất công việc, tiết kiệm chi phí, cải thiện hiệu quả hoạt động và quản lý thời gian tối ưu.

- Các mô hình AI trong ngân hàng đang được sử dụng để phân tích thực trạng của thị trường tài chính: Sử dụng các kỹ thuật máy học kết hợp với mô hình AI có thể cung cấp những cái nhìn sâu sắc về xu hướng thị trường. Vì lý do này, các mô hình AI đang được sử dụng rộng rãi trong các chức năng quản lý của quỹ phòng hộ. Từ những xu hướng thị trường được dự đoán bởi các mô hình AI, các nhà đầu tư có thể đưa ra các quyết định tài chính có giá trị hơn cho chủ đầu tư.

- Chấm điểm tín dụng và phân tích dự đoán thông qua dữ liệu thay thế: Có rất nhiều cá nhân, doanh nghiệp vừa và nhỏ không có quyền truy cập vào nơi cung cấp thông tin tín dụng ngân hàng do có ít hoặc không có lịch sử tín dụng. Các công ty công nghệ tài chính (Fintech) đang sử dụng AI để thu thập và xử lý dữ liệu thay thế như vị trí, lịch sử việc làm, tuổi tác, thói quen chi tiêu, trình độ học vấn, hồ sơ phạm tội, mạng xã hội... để đưa ra quyết định cho vay trong những trường hợp như vậy. Phân tích dự đoán bằng AI, có thể giúp tính toán điểm tín dụng, ngăn chặn các khoản nợ xấu và cung cấp yêu cầu tín dụng cho khách hàng khi dự định giao dịch.

- Tuân thủ quy định, phòng chống rửa tiền, phát hiện và ngăn chặn gian lận: Các hiệp định Basel I, II và III được đưa ra bởi Ủy ban Giám sát Ngân hàng Basel (BCBS), một ủy ban gồm các cơ quan giám sát ngân hàng được thành lập bởi các thống đốc ngân hàng trung ương của nhóm mười quốc gia (G10) vào năm 1975, cung cấp mức an toàn với khuôn khổ quản lý rủi ro bao gồm các quy trình KYC và AML (là quá trình thẩm định của một công ty hay tổ chức để xác minh danh tính khách hàng của họ. Mục đích để đảm bảo rằng số tiền mà khách hàng muốn gửi là sở hữu hợp pháp; đồng thời, cũng đảm bảo khách hàng không nằm trong danh sách đen “Blacklist” như khủng bố, tội phạm, tham nhũng,...) để bảo vệ hệ thống tránh các hành vi gian lận. Quá trình này kéo dài và phức tạp với hàng loạt thủ tục. Sức hấp dẫn thực sự của AI nằm ở khả năng sàng lọc qua hàng loạt dữ liệu đó, xác định các xu hướng và kiểu mẫu trong thời gian ngắn. Hình ảnh Camera thời gian thực và các kỹ thuật AI tiên tiến như Học sâu (deep learning) có thể được sử dụng để nhận dạng hình ảnh và khuôn mặt nhằm phát hiện và ngăn chặn tội phạm.

2. Rào cản thách thức của AI trong dịch vụ tài chính, ngân hàng

Mô hình AI làm thay đổi phương thức giao tiếp truyền thống giữa khách hàng với ngân hàng từ trực tiếp sang hình thái sử dụng công nghệ thông tin. Trong cả hai trường hợp, khách hàng không biết dữ liệu cá nhân mà mình đã cung cấp sẽ được sử dụng như thế nào, được gửi cho ai và với mục đích gì. Một trong các nguyên nhân là do mọi người hầu như không quan tâm đến việc đọc các chính sách bảo mật dài dòng mà vội đồng ý cho phép truy cập và sử dụng thông tin của mình. Khi đó, AI sẽ tự động thực thi các lệnh được cài đặt sẵn, trong số đó có những thứ thuộc sở hữu bí mật cá nhân, khi thông tin bị phát tán gây tổn hại cho người dùng thì AI và doanh nghiệp cung cấp không chịu trách nhiệm vì lý do khách hàng đã chấp thuận.

AI đã đóng góp to lớn vào an ninh mạng bằng cách tạo ra các điều kiện xác thực người dùng, mật khẩu mạnh mẽ, ngăn chặn các cuộc tấn công lừa đảo, thư rác, phát hiện tin tức giả mạo và tăng cường cuộc chiến chống tội phạm mạng nói chung. Điều đáng lo ngại là, bản thân AI cũng có thể bị tin tặc sử dụng làm công cụ nhắm mục tiêu chính xác và tinh vi vào cơ sở dữ liệu. Tin tặc sử dụng công nghệ AI để tự động hóa các quy trình tấn công, lừa đảo, đòi tiền chuộc tới nhiều người bằng cách sử dụng Chatbots, đồng thời lan truyền tin tức sai lệch và giả mạo.

Mặc dù, AI được cho là có thể nâng cao hiệu quả, cho phép xử lý một khối lượng lớn dữ liệu, nhưng trong một số trường hợp, nó không hoàn toàn tin cậy so với các chuyên gia công nghệ thông tin và an ninh mạng trong thế giới thực. AI phù hợp nhất để phân tích, dự đoán, cảnh báo rủi ro, xây dựng chính sách và ứng phó với tấn công mạng. Các giả định được thực hiện, dữ liệu được sử dụng, các mẫu được phát hiện và ma trận tính điểm trong thuật toán AI mà doanh nghiệp sử dụng không bao giờ được tiết lộ cho khách hàng. Vì vậy, họ không thể giải thích cho khách hàng của mình tại sao họ lại bị xếp vào một danh mục nhất định được chấp nhận hoặc bị từ chối đơn đăng ký mở tài khoản, thế chấp hoặc mở thẻ tín dụng. Các hệ thống AI hoạt động dựa trên tính công bằng, hợp lý, không có thành kiến ​​về kinh tế, xã hội và chính trị, cho kết quả theo số liệu thống kê. Tuy nhiên, tùy thuộc vào chất lượng của thuật toán đang sử dụng hoặc dựa trên các mẫu và thông tin đầu vào, nếu gặp trường hợp thiếu thông số, dữ liệu ảo, lỗi ở công thức xử lý, chương trình điều khiển không tối ưu... thì kết quả thu được có thể sai lệch lớn, gây ra hậu quả nghiêm trọng. Khả năng tương tác và tư vấn theo cơ chế AI có thể làm hỏng hồ sơ tài chính của khách hàng khi AI không có được toàn bộ chuyên môn và kinh nghiệm của các nhà hoạch định tài chính, ngân hàng được thực hiện bởi con người.

Rào cản của AI trong sự phát triển toàn diện và tự động hóa chu trình làm việc còn ở yếu tố tâm lý con người. Khách hàng khi giao dịch kinh doanh muốn làm việc trực tiếp với nhà cung cấp dịch vụ, điều này mang lại cho họ cảm giác an toàn. Họ muốn gói dịch vụ có thể tùy chỉnh để phù hợp với nhu cầu cụ thể của mình, đi kèm với sự đảm bảo hỗ trợ liên tục đến từ con người chứ không phải máy móc. Các hướng dẫn được máy tính hóa và cuộc gọi tự động có xu hướng gây khó chịu cho những khách hàng luôn tìm cách kết nối với người đại diện của doanh nghiệp để giải quyết các vấn đề của họ. Khách hàng có thể muốn chứng minh sự chân thành, uy tín cá nhân, nguyện vọng cộng tác lâu dài của mình cho các tổ chức tài chính và ngân hàng biết, điều này chỉ có thể được con người thể hiện và công nhận chứ không thể là máy móc không có cảm xúc.

Ngoài ra, bất kỳ sự áp dụng ồ ạt nào của công nghệ AI trong lĩnh vực ngân hàng đều có nguy cơ dẫn đến nhân viên bị dư thừa, bị sa thải gây ra tình trạng thất nghiệp. Vấn đề này ảnh hưởng đến khuôn khổ pháp lý và quy định được chấp nhận theo cách thức đạo đức, gây tổn hại đến lợi ích của người lao động.

3. Kết luận và đánh giá

AI là một công nghệ đột phá với tiềm năng to lớn để đổi mới, xây dựng và phân phối các dịch vụ tài chính, ngân hàng. Nó đã thay đổi cách thức kinh doanh được thực hiện trong các lĩnh vực quản lý danh mục đầu tư, giao dịch theo thuật toán, phát hiện gian lận, bảo lãnh cho vay, bảo hiểm, dịch vụ khách hàng, an ninh mạng và phân tích hành vi. AI có khả năng giảm chi phí hoạt động của văn phòng trung gian, hậu cần và sẵn sàng định hình lại cách hoạt động của các ngân hàng, công ty tài chính, cách họ tạo ra các sản phẩm, dịch vụ sáng tạo và cách họ cung cấp trải nghiệm của khách hàng lên cấp độ cao hơn. Vì vậy, để ứng dụng nhanh chóng và rộng rãi công nghệ AI, nhu cầu cấp thiết là phát triển các chương trình đào tạo nội bộ nhằm truyền đạt các kỹ năng AI cho các nhân viên hiện tại và tham gia vào mối quan hệ với các trường đại học, học viện để phát triển tìm ra các nhà khoa học dữ liệu có kỹ năng đủ điều kiện làm việc trong các dự án AI.

Ngành Tài chính, Ngân hàng ngày nay tập trung sự chú ý vào việc triển khai AI và có xu hướng bỏ qua hoặc giảm thiểu tầm quan trọng của lực lượng lao động con người trong sự đóng góp làm hài lòng của khách hàng, vốn là mục tiêu của bất kỳ chủ đề tiếp thị nào. Việc ưu tiên quá mức cho cải tiến công nghệ so với đầu tư vào nhân lực và nâng cao trình độ chủ yếu là do thiếu khả năng và không đủ dữ liệu để định lượng giá trị của con người trong sự hài lòng của khách hàng. Sự sẵn có của công nghệ không có nghĩa, nó cũng là lựa chọn tốt nhất trong mọi tình huống. Khách hàng luôn đánh giá cao tùy chọn tương tác với con người khi nào họ thực sự cần. Máy móc có thể khiến khách hàng thông cảm nhưng không đồng cảm. Hoạt động kinh doanh tiền bạc nghiêm túc trong ngành dịch vụ tài chính, ngân hàng cần có sự can thiệp của con người trong khâu quyết định hơn là những cỗ máy tuân theo logic, không theo giá trị con người và đạo đức. Trong một thế giới ngày càng phi vật chất hóa, sự lựa chọn của khách hàng sẽ được thúc đẩy nhiều hơn bởi sự tương tác của con người trong những giai đoạn then chốt như lúc ký kết hợp đồng, giải đáp thắc mắc, hỗ trợ thủ tục, tư vấn gia hạn... hơn là sự đa dạng và giá cả của sản phẩm.

Từ những phân tích về khả năng và giới hạn của AI, vấn đề đặt ra là cần có khuôn khổ quy định cho các cơ quan thẩm quyền của con người có thể chống lại các quyết định bởi thuật toán điều khiển của AI trong trường hợp khách hàng cảm thấy bị phân biệt đối xử hoặc bị hại, để không cho phép một hệ thống giả mạo trong các giao dịch tài chính, ngân hàng. Vì lợi ích bảo vệ người tiêu dùng, để đảm bảo tính phù hợp, nếu AI giỏi xử lý các nhiệm vụ đơn giản, lặp đi lặp lại và các cuộc trò chuyện tự động, thì không cần có sự can thiệp của con người, còn khi xử lý các yêu cầu phức tạp được cá nhân hóa, thấu hiểu cảm xúc, xây dựng lòng tin và thiết lập một kết nối trực tiếp với người dùng nhằm thu hút sự chú ý và đảm bảo lòng trung thành của họ với thương hiệu doanh nghiệp, cần kết hợp thận trọng giữa con người với AI, phân tích dữ liệu và tự động hóa để nâng cao trải nghiệm và đạt được sự hài lòng của khách hàng.

Tài liệu tham khảo:

1. Financial Stability Board Report (2017): Artificial Intelligence and Machine Learning in Financial Services.

2. Lui, A., & Lamb, G. W. (2018). Artificial intelligence and augmented intelligence collaboration: regaining trust and confidence in the financial sector. Information & Communications Technology Law, 27(3), 267 - 283.

3. Sarvady, G. (2017). Chatbots, Robo Advisers, & AI: Technologies presage an enhanced member experience, improved sales, and lower costs. Credit Union Magazine, 83(12), 18-22.

4. Ludwig, E. (2018). Regulators have their eye on AI. American Banker, 183 (130), 1.

5. Nunn, Robin. 2018. “Workforce Diversity Can Help Banks Mitigate AI Bias.” American Banker 183 (104): 1.

6. Satell, G. (2016). Teaching an Algorithm to Understand Right and Wrong. Harvard Business Review Digital Articles, 2-5.

7. Daks, M. (2018). Banking on Technology: Artificial intelligence helping banks get smarter. Njbiz, 31(7), 10.

8. FRPT- Finance Snapshot, 23-25. (2017), p23-25. 3p.No job losses due to chatbots, artificial intelligence: Banks.

9. Guy A. Messick. (2017). Artificial Intelligence: The Ultimate Disrupter. Credit Union Times, 28(38), 12.

10. Meinert, M. C. (2018). Artificial Intelligence: The Next Frontier of Cyber Warfare? ABA Banking Journal, 110(3), 43.

11. AI Applications in the top 4 Indian Banks (2017).


TS. Trương Thị Việt Phương

ThS. Trần Thu Phương

Khoa Cơ bản, Học viện Kỹ thuật mật mã


https://tapchinganhang.gov.vn

Tin bài khác

Chuyển đổi số ngành Ngân hàng Việt Nam: Bứt phá trong kỷ nguyên mới

Chuyển đổi số ngành Ngân hàng Việt Nam: Bứt phá trong kỷ nguyên mới

Bài viết đề cập đến vai trò then chốt của ngành Ngân hàng trong kỷ nguyên phát triển mới của đất nước dưới sự lãnh đạo của Đảng, đặc biệt trong bối cảnh chuyển đổi số toàn diện và xu thế toàn cầu hóa. Ngân hàng Nhà nước Việt Nam đã tích cực triển khai nhiều chiến lược thúc đẩy chuyển đổi số, hiện đại hóa hoạt động toàn ngành. Bài viết đồng thời phân tích nhiệm vụ, thành tựu, khó khăn trong quá trình này và đề xuất giải pháp giúp ngành Ngân hàng thực hiện sứ mệnh phát triển trong thời kỳ mới.
Thực trạng bảo vệ dữ liệu cá nhân trong thương mại điện tử và một số kiến nghị

Thực trạng bảo vệ dữ liệu cá nhân trong thương mại điện tử và một số kiến nghị

Thương mại điện tử phát triển mạnh sau đại dịch Covid-19 nhưng kéo theo nhiều rủi ro về bảo mật thông tin và dữ liệu cá nhân, gây ra tình trạng xâm phạm, đánh cắp dữ liệu và gia tăng tội phạm mạng. Do đó, việc bảo vệ dữ liệu cá nhân trở thành yêu cầu cấp thiết trong bối cảnh kinh tế số. Bài viết phân tích thực trạng bảo vệ dữ liệu, chỉ ra những hạn chế và đề xuất giải pháp hoàn thiện.
Phát triển ngân hàng số  và thanh toán không dùng tiền mặt  tại Phú Yên giai đoạn 2022 - 2024

Phát triển ngân hàng số và thanh toán không dùng tiền mặt tại Phú Yên giai đoạn 2022 - 2024

Nghiên cứu phân tích sự bùng nổ của ngân hàng số và thanh toán không dùng tiền mặt tại Phú Yên giai đoạn 2022 - 2024, với sự tăng trưởng mạnh về số lượng khách hàng, giao dịch và chuyển dịch sang kênh điện tử. Động lực là sự phối hợp giữa chính sách, đổi mới từ ngân hàng, công nghệ và sự hưởng ứng của người dân. Nghiên cứu kết luận giai đoạn này góp phần thúc đẩy chuyển đổi số và đề xuất giải pháp duy trì tăng trưởng, khắc phục thách thức về an ninh và khoảng cách số.
Đặc trưng của chuyển đổi số  và những tác động đến hoạt động  của các ngân hàng trung ương trên thế giới

Đặc trưng của chuyển đổi số và những tác động đến hoạt động của các ngân hàng trung ương trên thế giới

Chuyển đổi số, nổi bật trong bối cảnh CMCN 4.0, đang thay đổi sâu sắc cách vận hành và cung cấp dịch vụ trong ngành ngân hàng, bao gồm cả ngân hàng trung ương. Bài viết làm rõ khái niệm, đặc điểm của chuyển đổi số trong lĩnh vực này, phân tích tác động đến hoạt động của các NHTW trên thế giới và đề xuất gợi ý cho Việt Nam.
Tài chính - ngân hàng thời Deepfake: Nguy cơ và ứng phó

Tài chính - ngân hàng thời Deepfake: Nguy cơ và ứng phó

Với quyết tâm từ các cấp lãnh đạo, nỗ lực của ngành Ngân hàng và ý thức cảnh giác của mỗi người dân, chúng ta hoàn toàn có thể giảm thiểu mối đe dọa từ deepfake, góp phần bảo vệ an ninh tài chính quốc gia trong kỷ nguyên số hóa.
Tokenization trong lĩnh vực tài chính

Tokenization trong lĩnh vực tài chính

Những năm gần đây, token được sử dụng rộng rãi đối với các giao dịch trực tuyến trong lĩnh vực tài chính -ngân hàng, nhằm đảm bảo an toàn cho tài khoản của khách hàng. Tiến bộ công nghệ đã dẫn đến xu hướng tạo dựng token điện tử trên các nền tảng có khả năng lập trình với mục tiêu cung cấp hạ tầng cơ sở (gọi là sắp đặt token) và mã hóa các token (tokenization) để hỗ trợ các bên tham gia phát hành, chuyển giao tiền tệ và những tài sản khác, bắt đầu được triển khai trên thị trường tài sản ảo và nhanh chóng được nghiên cứu, thử nghiệm rộng rãi.
Hoàn thiện những "mảnh ghép" của hệ sinh thái số thông minh trong kỷ nguyên mới

Hoàn thiện những "mảnh ghép" của hệ sinh thái số thông minh trong kỷ nguyên mới

Ngày 29/5/2025, tại Hà Nội, dưới sự chỉ đạo của Ngân hàng Nhà nước Việt Nam (NHNN), Thời báo Ngân hàng đã phối hợp với Vụ Thanh toán - NHNN tổ chức sự kiện “Chuyển đổi số ngành Ngân hàng năm 2025” với chủ đề “Hệ sinh thái số thông minh trong kỷ nguyên mới”. Tham dự sự kiện có đồng chí Phạm Minh Chính - Ủy viên Bộ Chính trị, Thủ tướng Chính phủ, Trưởng ban Ban Chỉ đạo của Chính phủ về phát triển khoa học công nghệ, đổi mới sáng tạo, chuyển đổi số và Đề án 06.
Xu hướng phát triển của chi nhánh ngân hàng truyền thống trong kỷ nguyên số

Xu hướng phát triển của chi nhánh ngân hàng truyền thống trong kỷ nguyên số

Bài viết phân tích sự chuyển dịch của hệ thống chi nhánh ngân hàng truyền thống trong kỷ nguyên số, nhấn mạnh vai trò của hành vi khách hàng, hiệu quả chi phí và công nghệ. Mô hình hybrid được xem là giải pháp tối ưu, kết hợp giữa kênh số và chi nhánh truyền thống. Nghiên cứu đề xuất tái cấu trúc mạng lưới, nâng cao năng lực nhân sự và ứng dụng dữ liệu lớn để phục vụ đa dạng nhu cầu khách hàng.
Xem thêm
Thủ tướng chỉ đạo tiếp tục đẩy mạnh cao điểm đấu tranh ngăn chặn, đẩy lùi buôn lậu, gian lận thương mại

Thủ tướng chỉ đạo tiếp tục đẩy mạnh cao điểm đấu tranh ngăn chặn, đẩy lùi buôn lậu, gian lận thương mại

Thủ tướng Chính phủ Phạm Minh Chính vừa ký Công điện 82/CĐ-TTg ngày 4/6/2025 về tiếp tục đẩy mạnh cao điểm đấu tranh ngăn chặn, đẩy lùi tình trạng buôn lậu, gian lận thương mại, hàng giả, xâm phạm quyền sở hữu trí tuệ.
Tổng Bí thư Tô Lâm làm việc với Ban Chính sách, chiến lược Trung ương về cơ chế, chính sách quản lý hiệu quả thị trường vàng

Tổng Bí thư Tô Lâm làm việc với Ban Chính sách, chiến lược Trung ương về cơ chế, chính sách quản lý hiệu quả thị trường vàng

Chiều 28/5, đồng chí Tô Lâm, Tổng Bí thư Ban Chấp hành Trung ương Đảng Cộng sản Việt Nam đã có buổi làm việc với Ban Chính sách, chiến lược Trung ương về cơ chế, chính sách quản lý hiệu quả thị trường vàng trong thời gian tới.
Ngành Ngân hàng tiếp tục tiên phong trong chuyển đổi số, cùng đất nước bước vào kỷ nguyên mới

Ngành Ngân hàng tiếp tục tiên phong trong chuyển đổi số, cùng đất nước bước vào kỷ nguyên mới

Ngày 27/5/2025, tại Hà Nội, Ngân hàng Nhà nước Việt Nam (NHNN) tổ chức Hội nghị phát động phong trào “Cả nước thi đua đổi mới sáng tạo và chuyển đổi số” và “Bình dân học vụ số” của ngành Ngân hàng gắn với Nghị quyết số 57-NQ/TW của Bộ Chính trị. Hội nghị do đồng chí Nguyễn Thị Hồng - Thống đốc NHNN chủ trì cùng toàn thể Ban Lãnh đạo NHNN, lãnh đạo các đơn vị thuộc NHNN, các tổ chức tín dụng (TCTD)... tại điểm cầu Trung tâm và kết nối đến các điểm cầu NHNN khu vực.
Một số phương pháp lập dự toán và lợi ích của việc lập dự toán trong thực hành tiết kiệm, chống lãng phí

Một số phương pháp lập dự toán và lợi ích của việc lập dự toán trong thực hành tiết kiệm, chống lãng phí

Trong quá trình phát triển kinh tế của lĩnh vực công cũng như lĩnh vực tư nhân, việc giới hạn nguồn lực luôn là một vấn đề nan giải đối với các nhà quản lý. Để giải quyết vấn đề này, một trong các biện pháp được áp dụng phổ biến là lập dự toán. Việc nghiên cứu, sử dụng biện pháp lập dự toán một cách hiệu quả sẽ giúp các nhà quản lý kiểm soát nguồn lực tài chính thuận lợi hơn để đạt được mục tiêu đã đề ra và xa hơn nữa có thể đạt được mục tiêu tiết kiệm, chống lãng phí.
Dự thảo Luật sửa đổi, bổ sung Luật Các tổ chức tín dụng 2024: Khắc phục các hạn chế, bất cập trong việc xử lý tài sản bảo đảm và nợ xấu

Dự thảo Luật sửa đổi, bổ sung Luật Các tổ chức tín dụng 2024: Khắc phục các hạn chế, bất cập trong việc xử lý tài sản bảo đảm và nợ xấu

Dự thảo Luật Sửa đổi, bổ sung một số điều Luật Các tổ chức tín dụng là một bước tiến quan trọng trong việc hoàn thiện khung pháp lý, tạo điều kiện thuận lợi cho các tổ chức tín dụng xử lý tài sản và giảm thiểu nợ xấu. Những quy định mới tại Dự thảo Luật Sửa đổi, bổ sung Luật Các tổ chức tín dụng không chỉ giúp cải thiện hiệu quả hoạt động của hệ thống ngân hàng mà còn góp phần thúc đẩy sự ổn định và phát triển của nền kinh tế Việt Nam.
Vị thế của đô la Mỹ trên thị trường tài chính toàn cầu

Vị thế của đô la Mỹ trên thị trường tài chính toàn cầu

Tháng 4/2025 chứng kiến cuộc khủng hoảng niềm tin nghiêm trọng đối với đồng USD, bất chấp lợi suất trái phiếu Mỹ tăng. Bài viết phân tích những bất thường trên thị trường tài chính toàn cầu sau các biện pháp thuế quan gây tranh cãi của Mỹ, đồng thời chỉ ra nguyên nhân từ sự thay đổi cấu trúc tài chính, phi toàn cầu hóa và biến động địa chính trị. Nếu xu hướng này tiếp diễn, USD có nguy cơ mất dần vị thế, đe dọa sự ổn định của hệ thống tài chính thế giới.
Kinh nghiệm quốc tế về áp dụng Hiệp ước vốn Basel III  trong hoạt động ngân hàng và khuyến nghị cho Việt Nam

Kinh nghiệm quốc tế về áp dụng Hiệp ước vốn Basel III trong hoạt động ngân hàng và khuyến nghị cho Việt Nam

Hiệp ước vốn Basel III là khuôn khổ nâng cao với sự sửa đổi và củng cố cả ba trụ cột của Basel II, đây là công cụ hỗ trợ đắc lực để nâng cao chất lượng quản trị rủi ro và năng lực cạnh tranh của các ngân hàng. Bài viết phân tích tình hình áp dụng các Hiệp ước vốn Basel của hệ thống ngân hàng trên thế giới, cùng với kinh nghiệm quốc tế và thực tiễn tại Việt Nam trong việc áp dụng Hiệp ước vốn Basel III, tác giả đưa ra một số đề xuất giải pháp chính sách cho hệ thống ngân hàng...
Hiểu biết tài chính và truyền tải chính sách tiền tệ: Kinh nghiệm từ Ngân hàng Trung ương châu Âu và một số khuyến nghị

Hiểu biết tài chính và truyền tải chính sách tiền tệ: Kinh nghiệm từ Ngân hàng Trung ương châu Âu và một số khuyến nghị

Bài viết phân tích vai trò của hiểu biết tài chính trong việc truyền dẫn chính sách tiền tệ, dựa trên khảo sát của Ngân hàng Trung ương châu Âu; đồng thời, đề xuất tăng cường giáo dục và truyền thông tài chính để hỗ trợ chính sách tiền tệ và phát triển kinh tế bền vững.
Giải mã bẫy thu nhập trung bình: Kinh nghiệm Đông Á và một số khuyến nghị chính sách

Giải mã bẫy thu nhập trung bình: Kinh nghiệm Đông Á và một số khuyến nghị chính sách

Bài viết này tổng hợp bài học từ các nền kinh tế đã thành công vượt qua "bẫy thu nhập trung bình" như Hàn Quốc, Singapore, Đài Loan (Trung Quốc), Malaysia và Trung Quốc. Trên cơ sở đó, tác giả nêu một số khuyến nghị chính sách đối với Việt Nam nhằm duy trì đà tăng trưởng, tránh rơi vào “bẫy” và hướng tới mục tiêu thu nhập cao vào năm 2045.
Kinh tế vĩ mô thế giới và trong nước các tháng đầu năm 2025: Rủi ro, thách thức và một số đề xuất, kiến nghị

Kinh tế vĩ mô thế giới và trong nước các tháng đầu năm 2025: Rủi ro, thách thức và một số đề xuất, kiến nghị

Việt Nam đã đặt mục tiêu tăng trưởng GDP năm 2025 đạt 8% trở lên, nhằm tạo nền tảng vững chắc cho giai đoạn tăng trưởng hai con số từ năm 2026. Đây là một mục tiêu đầy thách thức, khó khăn, đặc biệt trong bối cảnh kinh tế toàn cầu còn nhiều bất định và tăng trưởng khu vực đang có xu hướng chậm lại, cùng với việc Hoa Kỳ thực hiện áp thuế đối ứng với các đối tác thương mại, trong đó có Việt Nam. Mặc dù vậy, mục tiêu tăng trưởng kinh tế trên 8% năm 2025 vẫn có thể đạt được, với điều kiện phải có sự điều hành chính sách linh hoạt, đồng bộ và cải cách thể chế đủ mạnh để khơi thông các điểm nghẽn về đầu tư, năng suất và thị trường…

Thông tư số 07/2025/TT-NHNN Sửa đổi, bổ sung một số điều của Thông tư số 39/2024/TT-NHNN ngày 01 tháng 7 năm 2024 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về kiểm soát đặc biệt đối với tổ chức tín dụng

Nghị định số 94/2025/NĐ-CP ngày 29 tháng 4 năm 2025 của Chính phủ quy định về Cơ chế thử nghiệm có kiểm soát trong lĩnh vực ngân hàng

Nghị định số 26/2025/NĐ-CP của Chính phủ ngày 24/02/2025 quy định chức năng, nhiệm vụ, quyền hạn và cơ cấu tổ chức của Ngân hàng Nhà nước Việt Nam

Thông tư số 59/2024/TT-NHNN ngày 31/12/2024 Sửa đổi, bổ sung một số điều của Thông tư số 12/2021/TT-NHNN ngày 30 tháng 7 của 2021 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về việc tổ chức tín dụng, chi nhánh ngân hàng nước ngoài mua, bán kỳ phiếu, tín phiếu, chứng chỉ tiền gửi, trái phiếu do tổ chức tín dụng, chi nhánh ngân hàng nước ngoài khác phát hành trong nước

Thông tư số 60/2024/TT-NHNN ngày 31/12/2024 Quy định về dịch vụ ngân quỹ cho tổ chức tín dụng, chi nhánh ngân hàng nước ngoài

Thông tư số 61/2024/TT-NHNN ngày 31/12/2024 Quy định về bảo lãnh ngân hàng

Thông tư số 62/2024/TT-NHNN ngày 31/12/2024 Quy định điều kiện, hồ sơ, thủ tục chấp thuận việc tổ chức lại ngân hàng thương mại, tổ chức tín dụng phi ngân hàng

Thông tư số 63/2024/TT-NHNN ngày 31/12/2024 Quy định về hồ sơ, thủ tục thu hồi Giấy phép và thanh lý tài sản của tổ chức tín dụng, chi nhánh ngân hàng nước ngoài; hồ sơ, thủ tục thu hồi Giấy phép văn phòng đại diện tại Việt Nam của tổ chức tín dụng nước ngoài, tổ chức nước ngoài khác có hoạt động ngân hàng

Thông tư số 64/2024/TT-NHNN ngày 31/12/2024 Quy định về triển khai giao diện lập trình ứng dụng mở trong ngành Ngân hàng

Thông tư số 57/2024/TT-NHNN ngày 24/12/2024 Quy định hồ sơ, thủ tục cấp Giấy phép lần đầu của tổ chức tín dụng phi ngân hàng