Dự đoán rủi ro tín dụng sử dụng học sâu

Nghiên cứu - Trao đổi
Việc đánh giá và dự đoán khả năng trả nợ của khách hàng là rất quan trọng để ngân hàng giảm thiểu rủi ro. Vì lí do này, các ngân hàng thường xây dựng hệ thống xử lí yêu cầu cho vay dựa trên tình trạng của khách hàng, chẳng hạn như tình trạng việc làm, lịch sử tín dụng...
aa

Tóm tắt: Việc đánh giá và dự đoán khả năng trả nợ của khách hàng là rất quan trọng để ngân hàng giảm thiểu rủi ro. Vì lí do này, các ngân hàng thường xây dựng hệ thống xử lí yêu cầu cho vay dựa trên tình trạng của khách hàng, chẳng hạn như tình trạng việc làm, lịch sử tín dụng... Tuy nhiên, các hệ thống đánh giá hiện tại có thể không phù hợp để đánh giá khả năng trả nợ của một số đối tượng, chẳng hạn như sinh viên hoặc những người không có lịch sử tín dụng. Để đánh giá đúng khả năng trả nợ của tất cả các nhóm đối tượng, tác giả đã sử dụng các dữ liệu khách hàng từ một số tổ chức tín dụng (TCTD), trong đó có Home Credit để xây dựng một mô hình mạng nơ-ron giúp dự đoán việc khách hàng đến vay có thể hoàn thành việc trả nợ của họ hay không.

Từ khóa: Khả năng trả nợ, hoạt động cho vay, rủi ro tín dụng, học sâu.

CREDIT RISK PREDICTION USING DEEP LEARNING

Abstract: Evaluating and predicting customers’ ability to repay debt is very important for banks to minimize risks. For this reason, there is a system created by banks to process loan requests based on the customer’s status, such as employment status, credit history, etc. However, the system Current ratings may not be appropriate for assessing the repayment capacity of certain groups, such as students or those with no credit history. To properly assess the debt repayment ability of all groups of people, the author used customer data from the credit institution, including Home Credit to build a neural network model, which helps predict the customers ' debt repayment ability.

Keywords: Debt repayment ability, lending activities, credit risk, deep learning.

1. Giới thiệu

Do không đủ lịch sử tín dụng, nhiều người gặp khó khăn trong việc vay vốn từ các nguồn đáng tin cậy chẳng hạn như ngân hàng. Những đối tượng này thường là sinh viên hoặc người thất nghiệp, những người không có cơ sở để chứng minh độ tin cậy đối với bên cho vay. Những tổ chức cho vay không chính thống có thể lợi dụng các đối tượng này bằng cách lấy lãi suất cao hoặc đưa ra các điều khoản ẩn trong hợp đồng. Thay vì đánh giá khách vay dựa trên điểm tín dụng, có nhiều cách thay thế khác để dự đoán khả năng trả nợ của họ. Ví dụ, việc làm có thể là một yếu tố ảnh hưởng lớn đến khả năng trả nợ của một người vì việc làm giúp con người có thu nhập và dòng tiền ổn định hơn. Bên cạnh đó, một số yếu tố khác như bất động sản, tình trạng hôn nhân và nơi cư trú cũng có thể hữu ích trong việc đánh giá khả năng trả nợ.

Những năm gần đây, sự phát triển mạnh mẽ của học sâu (Deep Learning) đã mang lại nhiều đóng góp to lớn trong việc xây dựng các mô hình dự đoán. Do đó, trong bài viết này, tác giả dự định sử dụng thuật toán học sâu để nghiên cứu mối tương quan giữa tình trạng của khách vay và khả năng trả nợ của họ. Trong mô hình, tác giả sử dụng bộ dữ liệu Home Credit Default Risk, gồm dữ liệu của 308.000 khách hàng ẩn danh với 122 đặc trưng. Bằng cách nghiên cứu mối tương quan giữa các đặc trưng này và khả năng trả nợ của khách hàng, mô hình trong bài viết có thể giúp các TCTD đánh giá khách vay từ nhiều khía cạnh hơn từ đó dự đoán được rủi ro tín dụng.

2. Cơ sở lí thuyết

2.1. Hoạt động cho vay

Cho vay là một hình thức cấp tín dụng, theo đó TCTD giao cho khách hàng một khoản tiền để sử dụng vào mục đích và thời hạn nhất định theo thỏa thuận với nguyên tắc hoàn trả cả gốc và lãi. Cho vay là hoạt động sinh lời lớn nhất song cũng có rủi ro cao nhất của các TCTD, chính vì vậy để TCTD có thể tồn tại và phát triển vững chắc thì hoạt động cho vay cần phải an toàn và hiệu quả.

Khả năng trả nợ của khách hàng là việc khách hàng có khả năng trả nợ đầy đủ và đúng hạn với bên cho vay hay không. Hiện tại vẫn chưa có định nghĩa thống nhất về khái niệm “khả năng trả nợ” mà chỉ có những dấu hiệu về việc khách hàng “không có khả năng trả nợ”, thông qua phương pháp loại trừ, có thể hiểu ngoài những khách hàng “không có khả năng trả nợ” là những khách hàng “có khả năng trả nợ”.

Theo Hiệp ước Basel II, hai tình trạng sau có thể dùng làm căn cứ để đánh giá khả năng không trả được nợ của khách hàng:

- Khách hàng không có khả năng thực hiện nghĩa vụ thanh toán đầy đủ khi đến hạn mà chưa tính đến việc ngân hàng bán tài sản (nếu có) để hoàn trả.

- Khách hàng có các khoản nợ xấu thời gian quá hạn trên 90 ngày. Trong đó, những khoản thấu chi được xem là quá hạn khi khách hàng vượt hạn mức hoặc được thông báo một hạn mức nhỏ hơn dư nợ hiện tại.

Thông qua định nghĩa của IMF và các dấu hiệu mà Hiệp ước Basel II mô tả có thể thấy, thông thường việc khách hàng phát sinh nợ xấu đồng nghĩa với việc khách hàng không có khả năng trả nợ.

2.2. Dự đoán rủi ro tín dụng

Các TCTD thường đánh giá khả năng trả nợ của khách hàng và rủi ro khi cho họ vay tiền. Căn cứ vào khả năng trả nợ và rủi ro, TCTD đặc biệt là ngân hàng có thể điều chỉnh lãi suất của các khoản vay cho khách hàng.

Việc nghiên cứu đánh giá khả năng trả nợ của khách hàng đã được các TCTD, nhà nghiên cứu thực hiện trong nhiều thập kỉ. Một số nghiên cứu tập trung vào việc tìm kiếm các thang đo hữu ích để đánh giá định lượng khả năng trả nợ của khách hàng, chẳng hạn như tỉ lệ chênh lệch thu nhập với chi tiêu hằng tháng và điểm tín dụng.

Bên cạnh đó, để ngăn chặn và giảm tỉ lệ rủi ro khi thanh toán khoản vay, Cục Bảo vệ tài chính người tiêu dùng (CFPB) đã đưa ra một bộ quy tắc và quy định mới để đánh giá khả năng trả nợ của người cho vay. Các quy tắc và quy định là các thông tin của khách vay bao gồm: Thu nhập hoặc tài sản đảm bảo; tình trạng việc làm; khoản thanh toán dự kiến hằng tháng; thanh toán hằng tháng cho các khoản vay, thanh toán thế chấp hằng tháng; tình trạng nợ hiện tại; thu nhập thặng dư; lịch sử tín dụng.

Những yếu tố này trở thành quy tắc chung để đánh giá khả năng trả nợ của khách hàng cũng chính là rủi ro tín dụng. Tuy nhiên, các quy tắc về khả năng trả nợ này có thể không phù hợp để đánh giá một số nhóm người cho vay. Ví dụ, sinh viên đại học có thể không đáp ứng các điều kiện để vay tiền từ các nguồn đáng tin cậy, chẳng hạn như ngân hàng, vì họ không có việc làm và lịch sử tín dụng rất hạn chế. Do đó, những người cho vay không đáng tin cậy có thể lợi dụng họ. Để ngăn chặn điều này xảy ra, mục tiêu của bài viết này là khám phá các đặc trưng hữu ích và dễ nhận biết hơn để đánh giá độ tin cậy và khả năng trả nợ của khách hàng. Ngoài ra, đóng góp của bài viết đó là tiến hành huấn luyện và thử nghiệm các mô hình học máy dựa trên các đặc trưng và tìm ra mô hình tốt nhất để dự đoán khả năng trả nợ của khách hàng.

3. Phương pháp

Mục tiêu của bài viết là dự đoán rủi ro tín dụng, cụ thể là dự đoán khả năng trả nợ của khách hàng dựa trên các yếu tố khác ngoài lịch sử tín dụng. Nó có thể được đưa về bài toán phân loại nhị phân. Phần tiếp theo sẽ giới thiệu các phương pháp tác giả đã sử dụng để tiền xử lí dữ liệu và các thuật toán học sâu được sử dụng để giải quyết vấn đề.

3.1. Tiền xử lí dữ liệu

Bộ dữ liệu được sử dụng để huấn luyện và thử nghiệm là bộ dữ liệu mẫu Kaggle, Home Credit Default Risk. Do tính phức tạp của dữ liệu thô, tác giả sẽ giới thiệu một số kĩ thuật tiền xử lí dữ liệu cho tập dữ liệu của mình trước khi sử dụng để huấn luyện và thử nghiệm.

Chọn thuộc tính

Dữ liệu gồm nhiều biến hay thuộc tính, tuy nhiên, không phải tất cả các thuộc tính đó đều ảnh hưởng đến biến mục tiêu. Những biến như vậy sẽ gây ra nhiễu cho mô hình. Mặc dù mô hình sẽ tự chọn ra các đặc trưng tốt nhất thông qua quá trình học. Tuy nhiên, đôi khi cũng xảy ra trường hợp mô hình cho rằng các thuộc tính đó quan trọng, làm giảm đi hiệu quả của mô hình.

Bên cạnh đó, do giới hạn phần cứng của nền tảng Google Colab nên tác giả quyết định giảm tải bớt một số thuộc tính không quan trọng hoặc ít quan trọng, ví dụ như thuộc tính Organizatio-type hay loại hình công việc của khách hàng, vì suy cho cùng việc trả nợ sẽ tập trung vào thu nhập bao nhiêu hơn là làm ngành gì. Tương tự có thể kể đến các thuộc tính như Name-type-suite để đánh dấu ai đi cùng khách hàng đến vay, thuộc tính Weekday-appr-process-start cho biết khách hàng đến vay vào ngày nào...

Biến đổi các dữ liệu không phải số

Thư viện Keras mà tác giả sử dụng để tạo mô hình không thể xử lí các dữ liệu dạng chữ, nên cần phải chuyển đổi nó thành các dạng dữ liệu khác để có thể huấn luyện mạng nơ-ron.

One-Hot Encoding là một cách biến đổi thích hợp cho các dữ liệu dạng chữ. Từ thuộc tính ban đầu sẽ tách thành số thuộc tính tương đương với số giá trị nó có, sau đó sẽ đánh giá trị nhị phân với các thuộc tính mới, giá trị là 1 nếu thuộc tính mới chính là giá trị của bản ghi ban đầu. Với thuộc tính Contract-type có hai giá trị là Cash loans và Revolving loans sẽ được tách thành hai thuộc tính mới là Contract-type-cashloans và Contract-type-revolvingloans.

Tích hợp dữ liệu

Sau khi đã biến đổi dữ liệu để phù hợp cho thuật toán, cần gộp chung dữ liệu các bảng tạo thành một bảng lớn duy nhất để huấn luyện mô hình.

Làm sạch dữ liệu

Là quá trình xử lí và loại bỏ các lỗi, thiếu sót, hoặc thông tin không chính xác khỏi tập dữ liệu. Mục tiêu của việc làm sạch dữ liệu là đảm bảo rằng dữ liệu được sử dụng trong quá trình phân tích hoặc huấn luyện mô hình là chính xác, đầy đủ và đáng tin cậy. Các công việc thường thấy trong làm sạch dữ liệu:

- Giá trị ngoại vi (outlier): Các giá trị cao hoặc thấp một cách bất thường, đôi khi có thể là giá trị vô hạn. Các giá trị này khiến cho mô hình học từ những trường hợp rất ít khi xảy ra và ảnh hưởng tới dự đoán của nó cho các trường hợp bình thường. Để tiện xử lí, mô hình sẽ đưa nó về giá trị null (không có giá trị) và xử lí cùng với nhóm sau.

- Giá trị bị thiếu: Đối với các giá trị null hay NaNs (không được xác định), có nhiều cách để xử lí. Nếu phần null quá lớn ta sẽ buộc phải bỏ cả cột kết quả đó đi vì giá trị null quá lớn không có tác dụng cho mô hình. Nếu tỉ lệ null nhỏ hơn, ta có thể cân nhắc cho chúng thành 0, thành giá trị trung bình của tập dữ liệu hoặc đôi khi là giá trị xuất hiện nhiều nhất trong thuộc tính đó.

Chia tập dữ liệu

Chia tập dữ liệu (Data Splitting) là việc chia dữ liệu thành hai (đôi khi là ba) tập dữ liệu con với mục đích để huấn luyện và kiểm thử mô hình. Tập dữ liệu đầu tiên để huấn luyện, sẽ giúp mô hình học từ các dữ liệu trong nó và điều chỉnh để dự đoán nó đúng hơn. Tập thẩm định dùng để đánh giá mô hình trong quá trình huấn luyện. Sau đó sẽ dùng mô hình dự đoán các giá trị trong tập kiểm thử.

3.2. Mô hình mạng nơ-ron sâu (Deep Neural Network - DNN)

DNN là một tiến bộ tương đối mới trong lĩnh vực lập trình mạng nơ-ron. Về bản chất, bất kì mạng nơ-ron nào có nhiều hơn hai lớp được coi là sâu. Khả năng tạo ra DNN đã tồn tại kể từ khi Pitts (1943) giới thiệu Perceptron đa lớp (mô hình mạng nơ-ron mạnh mẽ cho phép học các hàm phi tuyến tính đối với dữ liệu phức tạp). Tuy nhiên, việc huấn luyện mạng nơ-ron trở nên thực sự hiệu quả khi Hinton (1984) trở thành nhà nghiên cứu đầu tiên thành công trong việc huấn luyện những mạng nơ-ron phức tạp này.

Cấu trúc mạng nơ-ron sâu khá tương đồng với cấu trúc của mạng nơ-ron nông (Shallow neural network). Sự khác biệt chủ yếu nằm ở số lớp ẩn. Số lớp ẩn nhiều hơn so với 1, mạng nơ-ron được coi là sâu. (Hình 1)

Hình 1: Cấu trúc mạng nơ-ron sâu

Nguồn: Tác giả phân tích


Để tạo DNN cần phải thông qua ba bước chính:

- Định nghĩa kiến trúc của mạng và đầu vào, đầu ra.

- Huấn luyện mạng sử dụng dữ liệu huấn luyện với biến mục tiêu rõ ràng.

- Kiểm thử hiệu suất của mạng.

Tạo mạng nơ-ron

Sau khi chuẩn bị dữ liệu huấn luyện, đến lúc xây dựng mô hình mạng nơ-ron. Các kĩ thuật mô hình hóa đa dạng được chọn lựa và áp dụng và các tham số của chúng được điều chỉnh đến giá trị tối ưu. Mục tiêu là sử dụng tất cả dữ liệu và thông tin được cung cấp trong các bước trước đó một cách tốt nhất có thể để tạo ra một mô hình có thể giải quyết vấn đề. Như trong mô hình này sẽ là dự đoán khách hàng có gặp khó khăn trong quá trình trả nợ hay không.

Kiến trúc mạng nơ-ron

Mô hình mạng nơ-ron phù hợp thường được lựa chọn thông qua việc phát triển và so sánh nhiều khả năng, chỉ giữ lại những khả năng tốt nhất. Sau khi mô hình được chọn, nó nên được thực hiện với các tham số cụ thể (số lượng đầu vào, đầu ra và lớp ẩn).

Lớp đầu vào: Số lượng nơ-ron sẽ mặc định bằng số lượng thuộc tính của bài toán.

Lớp đầu ra: Số lượng nơ-ron sẽ phụ thuộc vào bài toán. Trong bài toán phân loại nhiều lớp thì nó sẽ có nhiều nơ-ron. Còn bài toán này đơn thuần là một bài toán phân loại nhị phân nên đầu ra sẽ là 1 nơ-ron.

Số lượng lớp ẩn: Không có một công thức nhất định cho số lớp ẩn. Thông thường nó sẽ là khoảng hai đến năm lớp ẩn. Ta có thể thử cho đến mô hình không còn tăng các điểm số đánh giá nữa nhưng cũng cần lưu ý càng nhiều lớp ẩn thì càng tăng khả năng quá khớp (overfitting).

Số lượng nơ-ron: Cũng không có một công thức nhất định cho số nơ-ron trong từng lớp. Một cách phổ biến là giảm dần một nửa số nơ-ron sau từng lớp. Cần lưu ý việc nếu quá nhiều nơ-ron sẽ tốn tài nguyên cho huấn luyện và overfitting còn quá ít nơ-ron thì đôi khi sẽ không bao quát hết mô hình. Trong bài viết này, tác giả thử nghiệm thấy 64 nơ-ron ở lớp ẩn đầu tiên, cho kết quả tốt.

Xây dựng mạng nơ-ron

Để đạt hiệu quả tốt nhất khi huấn luyện, mô hình sử dụng hai hàm kích hoạt là ReLu và Sigmoid. Mô hình sử dụng thuật toán Adam làm thuật toán tối ưu hóa. Đây là một thuật toán tối ưu được tạo ra cho việc huấn luyện mạng nơ-ron sâu. Thuật toán này có hiệu quả rất cao trong tốc độ huấn luyện, nó có một biến là Learning Rate hay tỉ lệ học, tức là độ thay đổi của các trọng số và độ lệch sau mỗi chu kì. Sau khi thử thì độ lệch là 0.01, Learning Rate được chọn.

Huấn luyện mạng nơ-ron

Sau khi xây dựng mô hình, bước tiếp theo là huấn luyện mô hình học dựa trên tập dữ liệu huấn luyện để dự đoán khả năng trả nợ của khách hàng. Việc huấn luyện được tiến hành trên nền tảng Google Colab với cấu hình Intel(R) Xeon(R) CPU @ 2.20GHz và 12.7 GB ram. Thời gian để mô hình tính toán và điều chỉnh các trọng số trong nó là hơn 2.983 giây. (Hình 2)

Hình 2: Kết quả huấn luyện mô hình

Nguồn: Tính toán của tác giả


4. Đánh giá hiệu suất mô hình

Để đánh giá hiệu suất mô hình, tác giả sử dụng điểm AUC (Area Under the Curve) là một phép đo tổng hợp về hiệu suất của phân loại nhị phân trên tất cả các giá trị ngưỡng có thể xảy ra. Để hiểu rõ hơn về độ đo này thì cần đề cập đến một định nghĩa khác liên quan đến nó là Confusion Matrix. (Hình 3)

Hình 3: Confusion Matrix

Nguồn: Tính toán của tác giả

Confusion Matrix là một bảng gồm bốn phần như sau:

- True Positive (TP): Số lượng các mẫu được dự đoán là Positive và thực tế cũng là Positive.

- True Negative (TN): Số lượng các mẫu được dự đoán là Negative và thực tế cũng là Negative.

- False Positive (FP): Số lượng các mẫu được dự đoán là Positive nhưng thực tế là Negative.

- False Negative (FN): Số lượng các mẫu được dự đoán là Negative nhưng thực tế là Positive.

Mô hình đã tự dự đoán và đưa ra độ chính xác (Accuracy) là 0,847. Giá trị Accuracy này được tính theo công thức sau:


Điều đó có nghĩa là tỉ lệ dự đoán chính xác của mô hình là 84,7%. Tuy nhiên, độ chính xác này chỉ phản ánh trên dữ liệu đã biết trước. Để đánh giá mô hình một cách khách quan hơn, ta sử dụng AUC. AUC chính là ROC Curve hay đường cong ROC được tạo ra bằng cách vẽ hai giá trị sau:

True Positive Rate (TPR) - Tỉ lệ TP:

False Positive Rate (FPR) - Tỉ lệ FP:


Đường cong ROC được vẽ với TPR là trục tung, FPR là trục hoành. Đường cong ROC của mô hình được biểu thị ở Hình 4.

Hình 4: Đường cong ROC

Nguồn: Tính toán của tác giả


AUC được tính bằng giá trị phần diện tích dưới đường cong trên tổng diện tích hình vuông tạo bởi TPR và FPR. Giá trị AUC càng gần 1 thì mô hình càng tốt. AUC có ưu điểm hơn Accuracy ở chỗ AUC không phụ thuộc vào độ lớn của bộ dữ liệu kiểm thử. Trong nghiên cứu này, tác giả đã sử dụng hàm tính AUC từ thư viện Keras và thu được kết quả xấp xỉ 0,75, một kết quả chấp nhận được.

5. Kết luận


Kết quả của nghiên cứu đã khẳng định sự hiệu quả của việc sử dụng phương pháp học sâu và xây dựng mô hình trên một bộ dữ liệu thực tế do Home Credit cung cấp, bao gồm thông tin về lịch sử tín dụng, thu nhập và một loạt các yếu tố quan trọng khác. Để cải thiện hiệu suất của mô hình, một phần quan trọng đã được dành cho quá trình tiền xử lí dữ liệu.

Trong quá trình tiền xử lí, những thuộc tính không quan trọng đã được loại bỏ, những thuộc tính không phải kiểu số đã được biến đổi để phù hợp với mô hình và dữ liệu đã được làm sạch để loại bỏ các giá trị bất thường và thiếu sót. Những bước này giúp tối ưu hóa dữ liệu đầu vào, từ đó cải thiện khả năng dự đoán của mô hình.

Kết quả của mô hình đã được đánh giá thông qua điểm số AUC đạt 0,75, một con số được chấp nhận trong việc dự đoán rủi ro tín dụng. Mô hình không chỉ giúp xác định những khách hàng có nguy cơ cao về vấn đề vỡ nợ mà còn cung cấp thông tin quan trọng để các TCTD có thể đưa ra quyết định về việc cấp tín dụng một cách minh bạch và chính xác hơn. Điều này đóng góp vào việc tối ưu hóa quản lí rủi ro và tăng cường tính ổn định của hệ thống tín dụng.

Tài liệu tham khảo:

1. Kolo, Brian, Thomas Rickett McGraw and Dathan Gaskill (2012). “Systems and methods for using data metrics for credit score analysis”. U.S. Patent Application 13/456,532.

2. C, elik, S, aban (2013). “Micro credit risk metrics: a comprehensive review”. Intelligent Systems in Accounting, Finance and Management 20, no. 4: pages 233-272.

3. Gorton, Gary, and James Kahn. ”The design of bank loan contracts”. The Review of Financial Studies 13, no. 2 (2000): pages 331-364.

4. “Home Credit Default Risk.” Kaggle, https://www.kaggle.com/c/homecredit-default-risk/data

5. J. Heaton (2015), “Artificial intelligence for humans, volume 3: Deep learning and neural networks”, T. Heaton, editor.

6. Langrehr, Virginia B., and Frederick W. Langrehr. ”Measuring the ability to repay: The residual income ratio”. Journal of Consumer Affairs 23, no. 2 (1989): pages 393-406.

7. M. Bahi and M. Batouche (2018), “Deep learning for ligand-based virtual screening in drug discovery”.

8. Mierzewski, Michael B., Christopher L. Allen, Jeremy W. Hochberg, and Kevin Hall (2013). “CFPB Finalizes Ability-to-Repay and Qualified Mortgage Rule”. Banking LJ 130: 611.


ThS. Nguyễn Thị Yến

Học viện Ngân hàng


https://tapchinganhang.gov.vn

Tin bài khác

Phương thức hậu kiểm chi ngân sách qua Kho bạc Nhà nước theo mô hình hai cấp

Phương thức hậu kiểm chi ngân sách qua Kho bạc Nhà nước theo mô hình hai cấp

Nghiên cứu phân tích phương thức hậu kiểm trong kiểm soát chi ngân sách nhà nước qua hệ thống Kho bạc Nhà nước trong bối cảnh hiện đại hóa tài chính công theo Quyết định số 385/QĐ-BTC. Trên cơ sở thực tiễn và kinh nghiệm quốc tế, nghiên cứu khẳng định hậu kiểm là xu hướng tất yếu nhằm nâng cao hiệu quả kiểm soát chi, giảm thủ tục hành chính và thúc đẩy giải ngân. Tác giả đề xuất mô hình hậu kiểm gồm ba nội dung trọng tâm: Tổ chức bộ máy tách biệt chức năng thanh toán và kiểm soát, kiểm soát theo mức độ rủi ro và ứng dụng công nghệ, trí tuệ nhân tạo.
Các nhân tố ảnh hưởng đến khả năng tiếp cận tài chính xanh của doanh nghiệp tại Việt Nam

Các nhân tố ảnh hưởng đến khả năng tiếp cận tài chính xanh của doanh nghiệp tại Việt Nam

Việc nghiên cứu, giải quyết các rào cản trong tiếp cận nguồn tài chính xanh của doanh nghiệp tại Việt Nam là rất quan trọng nhằm thúc đẩy phát triển bền vững và bảo vệ môi trường, cũng như giúp doanh nghiệp nâng tầm giá trị trên thị trường quốc tế. Những rào cản hiện tại không chỉ làm chậm tiến trình thực hiện các dự án xanh mà còn cản trở việc đạt được các mục tiêu phát triển bền vững của quốc gia. Bài viết phân tích các nhân tố ảnh hưởng đến việc tiếp cận tài chính xanh của các doanh nghiệp tại Việt Nam; từ đó, đề xuất một số khuyến nghị để hỗ trợ các doanh nghiệp tiếp cận dễ dàng hơn với nguồn tài chính xanh, bảo đảm sự đồng bộ, hiệu quả trong việc thực hiện các chính sách phát triển bền vững của Chính phủ.
Các yếu tố tác động đến hiệu quả hoạt động của các chi nhánh ngân hàng nước ngoài trên địa bàn Thành phố Hồ Chí Minh

Các yếu tố tác động đến hiệu quả hoạt động của các chi nhánh ngân hàng nước ngoài trên địa bàn Thành phố Hồ Chí Minh

Với kinh nghiệm hoạt động trong lĩnh vực ngân hàng quốc tế, các chi nhánh ngân hàng nước ngoài có hệ thống tổ chức, hoạt động, quản trị chuyên nghiệp, ứng dụng khoa học, công nghệ hiện đại, đội ngũ nhân sự có kinh nghiệm từ nước ngoài và đội ngũ nhân sự bản địa được đào tạo chất lượng cao, cung cấp các dịch vụ tài chính ngân hàng.
Kinh nghiệm cho các chủ thể tham gia hoạt động thanh toán quốc tế bằng phương thức thư tín dụng

Kinh nghiệm cho các chủ thể tham gia hoạt động thanh toán quốc tế bằng phương thức thư tín dụng

Việt Nam là một trong những quốc gia chủ động hội nhập kinh tế khi tham gia sâu rộng vào nhiều hiệp định thương mại tự do. Theo đó, phương thức thư tín dụng (L/C) cũng được sử dụng ngày càng phổ biến trong các hoạt động thanh toán quốc tế. Tuy nhiên, bên cạnh những lợi ích đạt được, các doanh nghiệp trong nước cũng phải đối mặt với những chiêu trò lừa đảo chào bán, mua hàng, ký kết hợp đồng giao dịch thương mại quốc tế với nhiều thủ đoạn đa dạng, tinh vi, khó phát hiện, gây tổn thất nặng nề về tài chính. Do đó, cần thiết có những bài học kinh nghiệm từ hoạt động thanh toán quốc tế bằng phương thức L/C trong bối cảnh nền kinh tế toàn cầu đang đối mặt với hàng loạt vấn đề nan giải.
Các yếu tố ảnh hưởng đến sự hài lòng của sinh viên khi mua sắm trực tuyến: Nghiên cứu tại các trường đại học trên địa bàn thành phố Thủ Dầu Một

Các yếu tố ảnh hưởng đến sự hài lòng của sinh viên khi mua sắm trực tuyến: Nghiên cứu tại các trường đại học trên địa bàn thành phố Thủ Dầu Một

Sử dụng phương pháp định tính và định lượng, nghiên cứu này điều tra các yếu tố ảnh hưởng đến sự hài lòng của sinh viên đại học khi tham gia mua sắm trực tuyến tại thành phố Thủ Dầu Một. Qua các bước kiểm định, nghiên cứu xác định những biến tác động đến sự hài lòng của sinh viên tại các trường đại học trên địa bàn thành phố Thủ Dầu Một khi tham gia mua sắm trực tuyến bao gồm: Tính tiện ích của nền tảng trực tuyến, chất lượng thông tin sản phẩm, chất lượng sản phẩm.
Dân trí tài chính số tại Việt Nam: Thực trạng và giải pháp

Dân trí tài chính số tại Việt Nam: Thực trạng và giải pháp

Bài viết nghiên cứu thực trạng dân trí tài chính số tại Việt Nam trong bối cảnh các sản phẩm tài chính số phát triển mạnh, nhưng hiểu biết của người dân còn hạn chế, tiềm ẩn nhiều rủi ro. Trên cơ sở đó, bài viết đề xuất các giải pháp nâng cao kiến thức tài chính số cho nhóm dễ tổn thương và mở rộng khả năng tiếp cận dịch vụ an toàn, góp phần bảo vệ người tiêu dùng và thúc đẩy hệ sinh thái tài chính số bền vững.
Kiểm soát hành vi “tẩy xanh” hướng tới tăng trưởng bền vững - Góc nhìn từ khía cạnh pháp lý

Kiểm soát hành vi “tẩy xanh” hướng tới tăng trưởng bền vững - Góc nhìn từ khía cạnh pháp lý

Ô nhiễm môi trường đang là vấn đề cấp bách toàn cầu, đặc biệt trong bối cảnh chuyển đổi số mạnh mẽ hiện nay, đòi hỏi sự chung tay hành động từ cả quốc gia và từng cá nhân. Tuy nhiên, nhiều doanh nghiệp và tổ chức tài chính vẫn đặt lợi nhuận lên trên trách nhiệm xã hội, thể hiện qua hành vi “tẩy xanh”. Việc nhận diện và kiểm soát hành vi này là cần thiết nhằm nâng cao hiệu quả hoạt động và thúc đẩy chuyển đổi sang nền kinh tế xanh, hướng tới phát triển bền vững.
Sự tham gia của Thừa phát lại vào hoạt động xử lý nợ xấu của tổ chức tín dụng: Thực trạng pháp luật và kiến nghị

Sự tham gia của Thừa phát lại vào hoạt động xử lý nợ xấu của tổ chức tín dụng: Thực trạng pháp luật và kiến nghị

Nợ xấu là thách thức lớn đối với sự ổn định tài chính, trong khi việc xử lý qua cơ quan thi hành án còn gặp nhiều khó khăn. Thừa phát lại được xem là giải pháp thay thế hỗ trợ các tổ chức tín dụng thu hồi nợ hiệu quả hơn, nhưng khung pháp lý hiện hành chưa tạo điều kiện phát huy vai trò này. Bài viết phân tích các quy định pháp luật liên quan, chỉ ra bất cập và tác động đến việc xử lý nợ xấu. Từ đó, nghiên cứu đề xuất giải pháp hoàn thiện pháp lý, tham khảo kinh nghiệm của Pháp.
Xem thêm
Xử lý tài sản thế chấp là nhà ở hình thành trong tương lai tại các tổ chức tín dụng

Xử lý tài sản thế chấp là nhà ở hình thành trong tương lai tại các tổ chức tín dụng

Trong những năm gần đây, chế định pháp lý về thế chấp nhà ở hình thành trong tương lai để bảo đảm thực hiện nghĩa vụ tại các tổ chức tín dụng (TCTD) ngày càng được các cơ quan có thẩm quyền chú trọng xây dựng và hoàn thiện. Tuy nhiên, hiện nay, các quy định pháp luật hiện hành về vấn đề này vẫn chưa thực sự đầy đủ và còn những bất cập, gây khó khăn trong việc áp dụng, bởi đây là một loại tài sản mang tính chất đặc thù và tiềm ẩn nhiều rủi ro so với các loại tài sản hiện hữu. Vì vậy, cần có cơ chế rõ ràng, hướng dẫn cụ thể để bảo đảm thực hiện nghĩa vụ, giảm thiểu những rủi ro cho các TCTD trong việc nhận thế chấp loại hình tài sản này.
Cơ chế thử nghiệm có kiểm soát - Bước ngoặt chiến lược thúc đẩy Fintech và chuyển đổi số ngành Ngân hàng

Cơ chế thử nghiệm có kiểm soát - Bước ngoặt chiến lược thúc đẩy Fintech và chuyển đổi số ngành Ngân hàng

Ngày 29/4/2025, Chính phủ đã ban hành Nghị định số 94/2025/NĐ-CP về cơ chế thử nghiệm có kiểm soát trong lĩnh vực ngân hàng. Đây là Nghị định đầu tiên tại Việt Nam thiết lập khuôn khổ pháp lý cho việc thử nghiệm các sản phẩm, mô hình, dịch vụ tài chính mới ứng dụng công nghệ, đồng thời là bước tiến quan trọng trong quá trình thể chế hóa đổi mới sáng tạo tài chính tại Việt Nam. Không chỉ góp phần hiện thực hóa chiến lược tài chính toàn diện quốc gia và chuyển đổi số ngành Ngân hàng, Nghị định này còn tạo ra các tác động sâu rộng đối với cả hệ thống ngân hàng thương mại và nền kinh tế.
Góc độ pháp lý về rào cản của thủ tục thông báo tập trung kinh tế theo Luật Cạnh tranh đối với hoạt động của doanh nghiệp

Góc độ pháp lý về rào cản của thủ tục thông báo tập trung kinh tế theo Luật Cạnh tranh đối với hoạt động của doanh nghiệp

Thủ tục thông báo tập trung kinh tế theo Luật Cạnh tranh năm 2018, dù đóng vai trò quan trọng trong việc kiểm soát các hành vi hạn chế cạnh tranh nhưng lại đang tạo ra những rào cản đáng kể cho doanh nghiệp do thời gian thẩm định kéo dài, yêu cầu hồ sơ phức tạp, đòi hỏi nhiều tài liệu chuyên sâu như mô tả giao dịch và phân tích thị trường. Những yếu tố này không chỉ làm tăng chi phí tuân thủ, rủi ro pháp lý, nguy cơ rò rỉ thông tin, mà còn cản trở doanh nghiệp tận dụng cơ hội kinh doanh, đặc biệt trong bối cảnh cạnh tranh toàn cầu ngày càng gia tăng.
Kinh nghiệm thế giới về sử dụng tín chỉ các-bon làm tài sản bảo đảm ngân hàng  và khuyến nghị đối với Việt Nam

Kinh nghiệm thế giới về sử dụng tín chỉ các-bon làm tài sản bảo đảm ngân hàng và khuyến nghị đối với Việt Nam

Phát triển các sản phẩm tài chính mới gắn với tín chỉ các-bon là chiến lược then chốt để thu hút dòng vốn tư nhân vào lĩnh vực giảm phát thải. Các sản phẩm như trái phiếu xanh được gắn với việc phát hành hoặc mua tín chỉ các-bon có thể tạo ra các dòng tiền ổn định và hấp dẫn cho nhà đầu tư bền vững (Asian Development Bank, 2019). Các khoản vay xanh thế chấp bằng tín chỉ các-bon cho phép doanh nghiệp tiếp cận vốn với chi phí thấp hơn nếu cam kết tạo ra lượng giảm phát thải xác thực. Việc đa dạng hóa các sản phẩm tài chính gắn với tín chỉ các-bon không chỉ tạo thêm động lực kinh tế cho các dự án xanh mà còn giúp thị trường các-bon phát triển theo hướng tích hợp sâu rộng với hệ sinh thái tài chính quốc gia.
Tiếp tục điều hành chính sách tiền tệ linh hoạt, chủ động, thích ứng với tình hình mới

Tiếp tục điều hành chính sách tiền tệ linh hoạt, chủ động, thích ứng với tình hình mới

Sáng 09/7/2025, Ngân hàng Nhà nước Việt Nam (NHNN) tổ chức Hội nghị sơ kết hoạt động ngân hàng 6 tháng đầu năm và triển khai nhiệm vụ 6 tháng cuối năm 2025. Tham dự Hội nghị có Thống đốc NHNN Nguyễn Thị Hồng và các đồng chí trong Ban Lãnh đạo NHNN, lãnh đạo các vụ, cục, đơn vị thuộc NHNN, các ngân hàng thương mại (NHTM) và điểm cầu trực tuyến tới NHNN các khu vực trên cả nước.
Vị thế của đô la Mỹ trên thị trường tài chính toàn cầu

Vị thế của đô la Mỹ trên thị trường tài chính toàn cầu

Tháng 4/2025 chứng kiến cuộc khủng hoảng niềm tin nghiêm trọng đối với đồng USD, bất chấp lợi suất trái phiếu Mỹ tăng. Bài viết phân tích những bất thường trên thị trường tài chính toàn cầu sau các biện pháp thuế quan gây tranh cãi của Mỹ, đồng thời chỉ ra nguyên nhân từ sự thay đổi cấu trúc tài chính, phi toàn cầu hóa và biến động địa chính trị. Nếu xu hướng này tiếp diễn, USD có nguy cơ mất dần vị thế, đe dọa sự ổn định của hệ thống tài chính thế giới.
Kinh nghiệm quốc tế về áp dụng Hiệp ước vốn Basel III  trong hoạt động ngân hàng và khuyến nghị cho Việt Nam

Kinh nghiệm quốc tế về áp dụng Hiệp ước vốn Basel III trong hoạt động ngân hàng và khuyến nghị cho Việt Nam

Hiệp ước vốn Basel III là khuôn khổ nâng cao với sự sửa đổi và củng cố cả ba trụ cột của Basel II, đây là công cụ hỗ trợ đắc lực để nâng cao chất lượng quản trị rủi ro và năng lực cạnh tranh của các ngân hàng. Bài viết phân tích tình hình áp dụng các Hiệp ước vốn Basel của hệ thống ngân hàng trên thế giới, cùng với kinh nghiệm quốc tế và thực tiễn tại Việt Nam trong việc áp dụng Hiệp ước vốn Basel III, tác giả đưa ra một số đề xuất giải pháp chính sách cho hệ thống ngân hàng...
Hiểu biết tài chính và truyền tải chính sách tiền tệ: Kinh nghiệm từ Ngân hàng Trung ương châu Âu và một số khuyến nghị

Hiểu biết tài chính và truyền tải chính sách tiền tệ: Kinh nghiệm từ Ngân hàng Trung ương châu Âu và một số khuyến nghị

Bài viết phân tích vai trò của hiểu biết tài chính trong việc truyền dẫn chính sách tiền tệ, dựa trên khảo sát của Ngân hàng Trung ương châu Âu; đồng thời, đề xuất tăng cường giáo dục và truyền thông tài chính để hỗ trợ chính sách tiền tệ và phát triển kinh tế bền vững.
Giải mã bẫy thu nhập trung bình: Kinh nghiệm Đông Á và một số khuyến nghị chính sách

Giải mã bẫy thu nhập trung bình: Kinh nghiệm Đông Á và một số khuyến nghị chính sách

Bài viết này tổng hợp bài học từ các nền kinh tế đã thành công vượt qua "bẫy thu nhập trung bình" như Hàn Quốc, Singapore, Đài Loan (Trung Quốc), Malaysia và Trung Quốc. Trên cơ sở đó, tác giả nêu một số khuyến nghị chính sách đối với Việt Nam nhằm duy trì đà tăng trưởng, tránh rơi vào “bẫy” và hướng tới mục tiêu thu nhập cao vào năm 2045.
Kinh tế vĩ mô thế giới và trong nước các tháng đầu năm 2025: Rủi ro, thách thức và một số đề xuất, kiến nghị

Kinh tế vĩ mô thế giới và trong nước các tháng đầu năm 2025: Rủi ro, thách thức và một số đề xuất, kiến nghị

Việt Nam đã đặt mục tiêu tăng trưởng GDP năm 2025 đạt 8% trở lên, nhằm tạo nền tảng vững chắc cho giai đoạn tăng trưởng hai con số từ năm 2026. Đây là một mục tiêu đầy thách thức, khó khăn, đặc biệt trong bối cảnh kinh tế toàn cầu còn nhiều bất định và tăng trưởng khu vực đang có xu hướng chậm lại, cùng với việc Hoa Kỳ thực hiện áp thuế đối ứng với các đối tác thương mại, trong đó có Việt Nam. Mặc dù vậy, mục tiêu tăng trưởng kinh tế trên 8% năm 2025 vẫn có thể đạt được, với điều kiện phải có sự điều hành chính sách linh hoạt, đồng bộ và cải cách thể chế đủ mạnh để khơi thông các điểm nghẽn về đầu tư, năng suất và thị trường…

Thông tư số 14/2025/TT-NHNN quy định tỷ lệ an toàn vốn đối với ngân hàng thương mại, chi nhánh ngân hàng nước ngoài

Thông tư số 10/2025/TT-NHNN quy định về tổ chức lại, thu hồi Giấy phép và thanh lý tài sản của quỹ tín dụng nhân dân

Thông tư số 07/2025/TT-NHNN Sửa đổi, bổ sung một số điều của Thông tư số 39/2024/TT-NHNN ngày 01 tháng 7 năm 2024 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về kiểm soát đặc biệt đối với tổ chức tín dụng

Thông tư số 08/2025/TT-NHNN Sửa đổi, bổ sung một số điều của Thông tư số 43/2015/TT-NHNN ngày 31 tháng 12 năm 2015 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về tổ chức và hoạt động của phòng giao dịch bưu điện trực thuộc Ngân hàng thương mại cổ phần Bưu điện Liên Việt, Thông tư số 29/2024/TT-NHNN ngày 28 tháng 6 năm 2024 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về quỹ tín dụng nhân dân và Thông tư số 32/2024/TT-NHNN ngày 30 tháng 6 năm 2024 của Thống đốc Ngân hàng Nhà nướ

Nghị định số 94/2025/NĐ-CP ngày 29 tháng 4 năm 2025 của Chính phủ quy định về Cơ chế thử nghiệm có kiểm soát trong lĩnh vực ngân hàng

Nghị định số 26/2025/NĐ-CP của Chính phủ ngày 24/02/2025 quy định chức năng, nhiệm vụ, quyền hạn và cơ cấu tổ chức của Ngân hàng Nhà nước Việt Nam

Thông tư số 59/2024/TT-NHNN ngày 31/12/2024 Sửa đổi, bổ sung một số điều của Thông tư số 12/2021/TT-NHNN ngày 30 tháng 7 của 2021 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về việc tổ chức tín dụng, chi nhánh ngân hàng nước ngoài mua, bán kỳ phiếu, tín phiếu, chứng chỉ tiền gửi, trái phiếu do tổ chức tín dụng, chi nhánh ngân hàng nước ngoài khác phát hành trong nước

Thông tư số 60/2024/TT-NHNN ngày 31/12/2024 Quy định về dịch vụ ngân quỹ cho tổ chức tín dụng, chi nhánh ngân hàng nước ngoài

Thông tư số 61/2024/TT-NHNN ngày 31/12/2024 Quy định về bảo lãnh ngân hàng

Thông tư số 62/2024/TT-NHNN ngày 31/12/2024 Quy định điều kiện, hồ sơ, thủ tục chấp thuận việc tổ chức lại ngân hàng thương mại, tổ chức tín dụng phi ngân hàng