Ứng dụng mô hình MIDAS để dự báo tăng trưởng xuất khẩu của Việt Nam

Bài viết khoa học chuyên sâu
Dự báo tăng trưởng xuất khẩu luôn là mối quan tâm không chỉ của các nhà nghiên cứu mà còn của các nhà hoạch định chính sách mỗi quốc gia trên thế giới...
aa

Tóm tắt:

Dự báo tăng trưởng xuất khẩu luôn là mối quan tâm không chỉ của các nhà nghiên cứu mà còn của các nhà hoạch định chính sách mỗi quốc gia trên thế giới. Đã có nhiều công trình nghiên cứu đưa ra các phương pháp khác nhau để dự báo tăng trưởng xuất khẩu, các phương pháp dự báo truyền thống trước đây đều phân tích dựa trên bộ dữ liệu mà trong đó các biến quan sát phải đưa về cùng một tần suất, điều này có thể làm tăng sai số của ước lượng và bỏ sót những yếu tố quan trọng có tác động đến tăng trưởng kinh tế. Vì vậy, trong một vài năm gần đây, việc ứng dụng các mô hình phân tích dữ liệu tần suất hỗn hợp (MIDAS) để dự báo tăng trưởng kinh tế đã được các nhà khoa học trên thế giới rất quan tâm. Ở Việt Nam, chưa có nghiên cứu nào ứng dụng mô hình đó để dự báo xuất khẩu. Do vậy, trong bài viết này, chúng tôi nghiên cứu và ứng dụng mô hình MIDAS để dự báo xuất khẩu của Việt Nam dựa trên bộ số liệu thu thập trong giai đoạn 2006 - 2020.

Từ khóa: Tăng trưởng xuất khẩu, mô hình MIDAS, Việt Nam.

1. Đặt vấn đề

Trong điều kiện nền kinh tế thế giới nói chung và nền kinh tế Việt Nam nói riêng ngày càng xuất hiện nhiều hơn và thường xuyên hơn các yếu tố bất ổn định thì việc phân tích và dự báo chính xác động thái của các chỉ tiêu kinh tế vĩ mô có ý nghĩa cực kỳ quan trọng trong điều hành chính sách, ổn định kinh tế vĩ mô. Một kết quả phân tích và dự báo tốt sẽ giúp nền kinh tế tránh được các đổ vỡ, hạn chế rủi ro và tận dụng cơ hội để phát triển. Phân tích và dự báo các chỉ tiêu kinh tế vĩ mô nói chung và dự báo kim ngạch xuất khẩu nói riêng luôn là một đòi hỏi cấp thiết, nhất là đối với một quốc gia đang phát triển như Việt Nam, một nền kinh tế mở có quy mô nhỏ nên dễ bị tổn thương với những biến động bất lợi từ bên ngoài. Do đó, việc nghiên cứu, tìm kiếm các phương pháp dự báo thích hợp cho kim ngạch xuất khẩu của Việt Nam là một việc quan trọng.

Trong hơn 30 năm mở cửa và hội nhập, xuất khẩu của Việt Nam đã phát triển vượt bậc và trở thành một động lực quan trọng thúc đẩy tăng trưởng kinh tế. Tổng kim ngạch xuất khẩu hàng hóa tăng từ 340 triệu USD năm 1986 lên 39,82 tỷ USD năm 2006; 72,2 tỷ USD năm 2010; 162,11 tỷ USD năm 2015 và 282,65 tỷ USD năm 2020 góp phần không nhỏ trong tăng trưởng GDP. Hoạt động xuất khẩu đã có sự tăng trưởng mạnh mẽ, đóng góp to lớn vào sự phát triển của nền kinh tế. Nhìn chung, kim ngạch xuất khẩu có xu hướng tăng, đóng góp ngày càng nhiều vào GDP.

Tuy nhiên, khi hội nhập quốc tế sâu rộng sẽ khiến nền kinh tế Việt Nam phải hứng chịu biến động mạnh trước các cú sốc trên thị trường quốc tế, điển hình là đại dịch Covid-19. Khi các chuỗi cung ứng toàn cầu đứt gãy sẽ ảnh hưởng không nhỏ đến các điểm kết nối của chuỗi (trong đó có Việt Nam), từ đó, sẽ có những ảnh hưởng và rủi ro nhất định đến hoạt động thương mại nói chung và xuất khẩu nói riêng. Do vậy, dự báo tăng trưởng xuất khẩu luôn là mối quan tâm không chỉ của các nhà nghiên cứu mà còn của các nhà hoạch định chính sách mỗi quốc gia trên thế giới bởi:

(i) Dưới góc độ kinh tế vĩ mô, xuất khẩu là một trong những bộ phận cấu thành nên GDP, do vậy, dự báo chính xác tốc độ tăng trưởng xuất khẩu sẽ giúp các nhà hoạch định chính sách xây dựng được các kịch bản tăng trưởng kinh tế của quốc gia.

(ii) Dưới góc độ tài chính - ngân hàng, dự báo đúng tăng trưởng xuất khẩu giúp các quốc gia chủ động hơn trong việc dự trữ ngoại hối của quốc gia mình.

(iii) Việt Nam là một quốc gia tăng trưởng kinh tế dựa vào xuất khẩu nên xuất khẩu có ảnh hưởng lớn đến chu kỳ kinh doanh, vì vậy, việc dự báo đúng và kịp thời về tăng trưởng xuất khẩu cũng giúp dự báo được các cú sốc của nền kinh tế.

Thực tế này đặt ra yêu cầu cấp thiết phải xây dựng thêm các lớp mô hình mới để dự báo tốt hơn các biến động bất thường trong ngắn hạn, đáp ứng kịp thời yêu cầu của công tác điều hành kinh tế vĩ mô. Mô hình MIDAS có ưu điểm lớn là khai thác tối đa các dữ liệu thu thập tần suất cao (ngày, tuần, tháng) để đưa ra dự báo cho biến phụ thuộc có dữ liệu tần suất thấp (quý, năm). Theo nghiên cứu của Kuzin (2011), phương pháp MIDAS cho thấy sự hiệu quả trong dự báo ngắn hạn cho chỉ số kinh tế vĩ mô; theo Yu Jiang và nhóm nghiên cứu (2017), các phương pháp dự báo sử dụng dữ liệu tần suất hỗn hợp có độ chính xác tốt hơn so với các phương pháp dự báo truyền thống. Do đó, trong nghiên cứu này, mô hình MIDAS được ứng dụng nhằm khai thác tốt nhất các dữ liệu đã thu thập được với tần suất khác nhau (ngày, tháng, quý) và từ nhiều hoạt động/khu vực kinh tế khác nhau để dự báo tức thời tốc độ tăng trưởng xuất khẩu của Việt Nam. Kết quả thực nghiệm được kỳ vọng sẽ tạo tiền đề để thúc đẩy hơn nữa việc vận dụng mô hình MIDAS cho công tác dự báo các chỉ tiêu kinh tế vĩ mô quan trọng khác mà các cơ quan Chính phủ cần theo dõi để hoạch định chính sách, đồng thời là căn cứ cho việc tích hợp kỹ thuật hồi quy MIDAS vào hệ thống mô hình phân tích định lượng của các cơ quan hoạch định chính sách nhằm đáp ứng mục tiêu điều hành chính sách kinh tế vĩ mô nói chung và chính sách xuất khẩu nói riêng trong giai đoạn mới của Việt Nam.

2. Tổng quan về mô hình MIDAS

Mô hình MIDAS được đề xuất bởi nhóm tác giả Eric Ghysels, Arthur Sinko & Rossen Valkanov năm 2002. Về cơ bản, mô hình MIDAS là các hồi quy dạng rút gọn được tham số hóa, liên quan đến các quá trình lấy mẫu ở các tần suất khác nhau. Trong đó, các biến giải thích có tần suất khác nhau, bằng hoặc cao hơn tần suất của biến phụ thuộc và đối với các biến giải thích có tần suất cao hơn, các đa thức phân phối trễ được sử dụng để ngăn chặn sự gia tăng về số lượng tham số cũng như các vấn đề liên quan đến lựa chọn thứ tự trễ.

Mô hình MIDAS cơ bản cho một biến giải thích và bước tiếp theo với hq = hm/m được xác định như sau:


Trong đó:

- y là biến phụ thuộc có tần suất thấp; x là biến giải thích có tần suất cao.

- tq là thời điểm mà y đã có sẵn dữ liệu ở tần suất thấp, tm là thời điểm mà y đã có sẵn dữ liệu ở tần suất cao và hq là thời điểm dự báo theo tần suất thấp; hm là thời điểm dự báo theo tần suất cao.

- m là chỉ số xác định mức độ cao hơn về tần suất của biến độc lập so với biến phụ thuộc. Ví dụ nếu y có tần suất quý và x có tần suất tháng thì m = 3, còn nếu y có tần suất quý còn x có tần suất tuần thì m = 12.

- là đa thức trễ với Lm là toán tử trễ được xác định bởi:

được lấy mẫu từ biến có tần suất cao

- là các tham số của các hệ số độ trễ của mô hình cần được ước lượng.

Một trong các vấn đề chính của phương pháp MIDAS là tìm tham số hóa phù hợp cho các hệ số trễ . Vì có tần suất cao hơn , việc mô hình hóa đầy đủ thường yêu cầu nhiều độ trễ trong phương trình hồi quy, điều này có thể dẫn đến tình trạng tham số hóa quá mức. Một số lược đồ trọng số phổ biến để tham số hóa như Almon còn gọi là “Trễ Almon mũ” tương ứng với hàm trễ Almon. Cụ thể lược đồ Almon được biểu diễn như sau:

Với Q là số lượng tham số của θ, hay θ = (θ1,θ2,…,θQ ) là các tham số cần được ước lượng. Hàm này khá linh hoạt và có thể có nhiều hình dạng khác nhau chỉ với vài tham số. Chúng có thể là mô hình tăng dần, giảm dần hoặc lồi lõm. Ghysel, Santa-Clara và Valkanov (2005) đã sử dụng dạng hàm này với hai tham số, cho phép tính linh hoạt cao và xác định có bao nhiêu độ trễ được đưa vào hồi quy. Vì lược đồ trễ Almon được sử dụng phổ biến nhất và có tính linh hoạt cao nên trong nghiên cứu này nhóm tác giả sử dụng lược đồ trễ Almon để xác định các tham số hóa phù hợp cho các hệ số trễ của mô hình.

Mô hình MIDAS được ứng dụng nhiều trong lĩnh vực tài chính; kinh tế vĩ mô và được Ghysels cùng một số tác giả phát triển cho ra các mô hình mở rộng của MIDAS như MIDAS không bị hạn chế hay U-MIDAS (là mô hình MIDAS được bổ sung thêm các hạn chế khác nhau về ảnh hưởng của các biến tần suất cao bằng cách mỗi nhân tố tần suất cao hơn được xác định là một biến giải thích trong hồi quy tần suất thấp, MIDAS trọng số STEP hay STEP-MIDAS (là mô hình U-MIDAS mà các hệ số với dữ liệu tần suất cao bị hạn chế bằng cách sử dụng hàm STEP, mô hình MIDAS trễ đa thức tăng cường hay ADL-MIDAS (trong đó, với mỗi tần suất cao đến k, hệ số hồi quy của các thành phần tần suất cao được mô hình hóa dưới dạng đa thức trễ p- chiều), mô hình MIDAS trọng số Almon mũ hay EAW-MIDAS (là mô hình MIDAS sử dụng trọng số mũ và đa thức trễ bậc 2), mô hình MIDAS trọng số β hay BW-MIDAS (là mô hình MIDAS sử dụng hàm trọng số β) (Andreou, Ghysels, and Kourtellos 2010; Ghysels, Kvedaras, and Zemlys 2016; Kvedaras et al. 2021). Trong đó, các mô hình U-MIDAS, STEP-MIDAS và ADL-MIDAS được ước lượng bằng phương pháp pháp hồi quy tuyến tính bình phương nhỏ nhất (OLS), còn các mô hình EAW-MIDAS và BW-MIDAS được ước lượng bằng phương pháp hồi quy phi tuyến bình phương nhỏ nhất. Ưu điểm của mô hình MIDAS, ngoài việc khắc phục được vấn đề dữ liệu có tần suất hỗn hợp, còn giảm thiểu số lượng tham số ước lượng và làm cho mô hình hồi quy đơn giản hơn. Hàm trọng số được sử dụng để giảm số lượng tham số trong hồi quy MIDAS. Theo các kết quả nghiên cứu đã công bố, mô hình MIDAS thường hiệu quả cho dự báo tức thời và dự báo ngắn hạn.

3. Dữ liệu nghiên cứu

3.1. Nguồn số liệu

Nghiên cứu được thực hiện trên bộ dữ liệu gồm các chỉ số kinh tế vĩ mô, được thu thập với các tần suất khác nhau (theo quý, tháng, tuần) từ trang web của Tổng cục Thống kê, IMF, WB, ADB, Bloomberg,… trong giai đoạn từ năm 2006 đến năm 2020. Lý do để nhóm tác giả lựa chọn giai đoạn từ năm 2006 - 2020 vì tính từ năm 2006 trở đi, các chỉ tiêu kinh tế vĩ mô của Việt Nam được thu thập và thống kê một cách đầy đủ nhất. Các dữ liệu đã thu thập ban đầu được xử lý trên phần mềm Excel.

Trong nghiên cứu này, nhóm chúng tôi dự báo tốc độ tăng trưởng xuất khẩu của Việt Nam hàng quý bằng mô hình MIDAS cơ bản. Các phân tích được thực hiện trên phần mềm Eviews 11. Bộ dữ liệu được tách thành 2 giai đoạn: (i) Giai đoạn từ năm 2006 đến năm 2018 dùng để ước lượng các tham số trong các mô hình hồi quy; (ii) Giai đoạn từ năm 2019 đến năm 2020 được dùng để đưa ra các dự báo.

3.2. Các biến đưa vào trong mô hình

Để dự báo tốc độ tăng trưởng xuất khẩu theo quý, nhóm nghiên cứu dựa trên bộ số liệu gồm 22 biến ứng với 19 chỉ số kinh tế (trong đó: 5 biến tần suất quý, 14 biến tần suất tháng) và 3 biến tần suất tuần, được mô tả chi tiết trong Bảng 1, Bảng 2, Bảng 3.



4. Kết quả dự báo tăng trưởng xuất khẩu theo quý của Việt Nam

4.1. Tình hình tăng trưởng xuất khẩu hàng quý của Việt Nam trong giai đoạn từ năm 2006 - 2020

Giai đoạn từ năm 2006 đến năm 2020 là giai đoạn Việt Nam hội nhập kinh tế sâu rộng với sự kiện quan trọng là Việt Nam trở thành thành viên thứ 150 của WTO. Hoạt động xuất khẩu đã có sự tăng trưởng mạnh mẽ, đóng góp to lớn vào sự phát triển của nền kinh tế. Nhìn chung, kim ngạch xuất khẩu có xu hướng tăng, đóng góp ngày càng nhiều vào GDP. Kể từ năm 2012, Việt Nam đã thoát khỏi nhập siêu, đóng góp của xuất khẩu có xu hướng tăng nhiều hơn, cán cân thương mại hàng hóa đã chuyển từ mức thâm hụt cao trong giai đoạn 2000 - 2011 sang mức thặng dư. Cơ cấu xuất khẩu có những chuyển biến tích cực theo hướng giảm hàm lượng xuất khẩu thô, tăng mạnh xuất khẩu sản phẩm chế biến, sản phẩm công nghiệp. Thị trường xuất khẩu ngày càng được mở rộng và đa dạng, nhiều sản phẩm đã dần có chỗ đứng và khả năng cạnh tranh trên nhiều thị trường có yêu cầu cao về chất lượng như EU, Nhật Bản, Hoa Kỳ... Cơ cấu thị trường xuất khẩu chuyển dịch theo hướng giảm dần xuất khẩu sang thị trường châu Á, tăng dần xuất khẩu sang thị trường châu Âu và châu Mỹ.

Hình 1 cho thấy, mức tăng trưởng xuất khẩu hàng quý của Việt Nam liên tục thay đổi theo thời gian. Đặc biệt, trong giai đoạn 2008 đến năm 2010 xuất khẩu của Việt Nam có nhiều thay đổi, lao dốc mạnh từ quý 1 năm 2008, chạm đáy quý 3 năm 2009 với mức tăng trưởng âm khoảng - 20% và bắt đầu hồi phục ngay sau đó, đến quý 3 năm 2011, tăng trưởng xuất khẩu của Việt Nam đạt mức cao nhất, khoảng 41%. Do ảnh hưởng của dịch Covid-19, quý 2 năm 2020 tăng trưởng xuất khẩu của Việt Nam giảm sút nghiêm trọng với tốc độ tăng trưởng -7%. Tuy nhiên, trung bình của toàn giai đoạn từ năm 2006 đến năm 2020 xuất khẩu bình quân mỗi tháng của nước ta tăng khoảng 17%.

4.2. Kết quả dự báo tăng trưởng xuất khẩu Việt Nam bằng mô hình MIDAS

Mô hình MIDAS có rất nhiều biến thể khác nhau, trong nghiên cứu này, trước hết, chúng tôi ứng dụng mô hình MIDAS cơ bản với các tham số trong mô hình được chọn lựa như đã trình bày. Nhóm nghiên cứu cũng xem xét ba mô hình, mỗi mô hình gồm 16 biến trong đó có 15 biến độc lập.

Mô hình MIDAS1: 15 biến độc lập gồm 4 biến tần suất quý và 11 biến tần suất tháng.

Mô hình MIDAS2: 15 biến độc lập gồm 1 biến tần suất quý TTGDP; 14 biến tần suất tháng (11 biến cũ + 3 biến mới: V_M, USD_M, DT_M).

Mô hình MIDAS3: 15 biến độc lập gồm 1 biến tần suất quý, 11 biến tần suất tháng và 3 biến tần suất tuần V_W, USD_W, DT_W.

Kết quả hồi quy: 3 mô hình đều có độ phù hợp cao

Hình 2 chỉ ra rằng, khi so sánh với chuỗi dữ liệu thực tế, ba mô hình MIDAS dự đoán chính xác xu hướng biến động của chuỗi tăng trưởng xuất khẩu của Việt Nam. Hầu hết thời gian, tăng trưởng xuất khẩu dự đoán theo sát tăng trưởng xuất khẩu thực tế, chỉ có một số ngoại lệ, chẳng hạn, như giai đoạn đầu năm 2006 đến giữa năm 2007, hai quý đầu năm 2014 và năm 2015. Phạm vi dao động của ba đường dự báo là rất nhỏ so với giá trị của dòng thực, với sai số tuyệt đối trung bình của ba dòng nằm trong khoảng từ 4% đến 5%. Hơn nữa, các kết quả dự báo theo dõi chặt chẽ các đỉnh và đáy của chu kỳ xuất khẩu. Khi so sánh các đường dự báo của mô hình MIDAS2 và MIDAS3, rõ ràng, hai mô hình cung cấp kết quả dự báo rất tương đồng; trên thực tế, hai dòng thực tế giống hệt nhau.

Kết quả dự báo của mô hình MIDAS2 và MIDAS3 trong giai đoạn 2019 - 2020 khá giống với dữ liệu thực tế khi so sánh với mô hình MIDAS1. Do lợi thế sử dụng dữ liệu tần số cao và đa dạng trong mô hình nên tần suất hỗn hợp mô hình vượt trội hơn các mô hình cổ điển (VAR, SVAR, BVAR, VECM) trong việc nắm bắt những thay đổi nhanh chóng và bất ngờ trong hoạt động xuất khẩu. Mặt khác, các mô hình truyền thống thường bị hạn chế bởi việc sử dụng dữ liệu với tần suất giống nhau (ví dụ: mô hình hàng tháng chỉ sử dụng dữ liệu với tần suất hàng tháng, mô hình hàng quý chỉ sử dụng dữ liệu với tần suất hàng quý), vì vậy, tính linh hoạt của chúng sẽ hạn chế so với mô hình MIDAS.

Đánh giá sai số dự báo

Bảng 4 cho thấy ba mô hình MIDAS được đề xuất với trọng số Almon đưa ra dự báo tốt về tăng trưởng xuất khẩu hàng quý của Việt Nam. Nếu chỉ xét theo mô hình MIDAS, dự báo cho tất cả các quý của năm 2019 là khá tốt với sai số dự báo thấp; kết quả dự báo tốt nhất thuộc về quý 3 với sai số chỉ 0,06%, tiếp theo là quý 1 (3%) và quý 4 (3,89%); tuy nhiên, khi bước sang năm 2020, sai số dự báo có sự chênh lệch khá lớn, các quý đều có mức sai số trên 16%. Đối với mô hình MIDAS2 và MIDAS3, kịch bản tương tự, nhưng sai số dự báo đã được cải thiện đáng kể. Nếu chúng ta chỉ xem xét năm 2019, cụ thể là cả hai mô hình đều có sai số dự báo thấp, khoảng 4%; mô hình MIDAS2 có tới 3/4 kết quả dự đoán dưới 2%, trong khi mô hình MIDAS3 có 3/4 kết quả dự báo dưới 2,2%. Mô hình MIDAS2 và 3 cũng có sai số dự báo nhỏ hơn đáng kể so với mô hình MIDAS1

khi chỉ được tính toán cho năm 2020. Phát hiện này chứng tỏ rằng mô hình MIDAS ưu việt hơn trong dự báo ngắn hạn. Sai số dự báo theo hai tiêu chí MAE và lỗi trung bình phương gốc (RMSE) một lần nữa cho thấy mô hình MIDAS2 và MIDAS3 dự báo tăng trưởng xuất khẩu của Việt Nam tốt hơn so với mô hình MIDAS1 và kết quả dự báo của hai mô hình MIDAS2 và MIDAS3 gần như tốt ngang nhau. Điều này là do mô hình MIDAS2 và MIDAS3 đã sử dụng nhiều biến hơn với dữ liệu tần số cao hơn so với mô hình ban đầu. Cụ thể, ba chỉ số tài chính và tiền tệ hàng quý (tài khoản vốn hóa, cán cân thanh toán và đầu tư trực tiếp ròng) được thay thế bằng ba chỉ số tiền tệ hàng tháng (giá vàng, tỷ giá USD/VND và giá dầu thô) trong mô hình MIDAS2 và 3, chỉ số tiền tệ hàng tuần (giá vàng, tỷ giá USD/VND và giá dầu thô) trong mô hình MIDAS3. Tuy nhiên, bộ chỉ số sinh thái trong mô hình dự báo tăng trưởng xuất khẩu giống nhau ở mô hình MIDAS2 và MIDAS3, ngoại trừ tần suất hàng tháng và hàng tuần, do đó sự khác biệt trong kết quả dự báo là không đáng kể, nhưng mô hình MIDAS3 vẫn vượt trội hơn so với mô hình MIDAS2.

Kết quả này chứng minh rằng, sự phát triển của các mô hình dự báo này đang đi đúng hướng và dữ liệu đầu vào được lựa chọn phù hợp. Hơn nữa, việc bổ sung dữ liệu tài chính tần số cao vào mô hình hồi quy MIDAS cũng nâng cao độ chính xác của dự đoán, chứng minh rằng dữ liệu tài chính có vai trò quan trọng trong việc dự đoán tăng trưởng xuất khẩu. Phát hiện này ngụ ý rằng để sử dụng đầy đủ khả năng dự báo của các chỉ báo tài chính, chúng phải được kết hợp với dữ liệu kinh tế vĩ mô.

5. Kết luận

Nghiên cứu sử dụng mô hình MIDAS để dự đoán tăng trưởng xuất khẩu của Việt Nam dựa trên bộ số liệu gồm các chỉ số kinh tế vĩ mô thu thập trong giai đoạn 2006 - 2020. Kết quả phân tích cho thấy, với cùng các biến độc lập, dữ liệu được lấy ở tần suất cao hơn, mô hình MIDAS sẽ cho kết quả dự báo tốt hơn. Cũng như một số kết quả nghiên cứu đã được công bố trước đây, kết quả dự báo cho thấy mô hình MIDAS có hiệu quả đối với dự báo trong ngắn hạn. Kết quả nghiên cứu cũng cho thấy rằng, các biến tài chính tần số cao có thể được sử dụng để dự báo tăng trưởng xuất khẩu của Việt Nam. Điều này có thể liên quan đến sự phát triển gần đây của thị trường tài chính Việt Nam.

Từ quan điểm chính sách, phát hiện của chúng tôi ngụ ý rằng, các biến tài chính cần được theo dõi chặt chẽ để dự đoán những biến động trong chu kỳ xuất khẩu. Về mặt mô hình, kết quả chỉ ra tầm quan trọng của việc liên kết các khu vực tài chính và thực tế kinh tế trong các mô hình kinh tế vĩ mô. Vai trò của các biến tài chính trong việc dự đoán tăng trưởng xuất khẩu không chỉ do tính chất hướng tới tương lai của chúng mà còn do sự liên kết chặt chẽ giữa các thị trường tài chính và hoạt động xuất nhập khẩu của một quốc gia.

Trong những năm gần đây, các mô hình phân tích dữ liệu tần suất hỗn hợp đã được quan tâm và ứng dụng nhiều trong các lĩnh vực kinh tế và tài chính, đặc biệt là trong dự báo các chỉ số kinh tế vĩ mô quốc gia. Tuy nhiên, ở Việt Nam hầu như chưa có các nghiên cứu ứng dụng các mô hình này. Vì vậy, việc áp dụng các mô hình với dữ liệu tần số hỗn hợp như MIDAS để dự báo các chỉ số kinh tế vĩ mô của Việt Nam là một hướng nghiên cứu mới đầy hứa hẹn. Những dự báo ngắn hạn về các chỉ tiêu kinh tế vĩ mô sẽ có ý nghĩa quan trọng trong việc hoạch định chính sách và đề ra chiến lược phát triển kinh tế của mỗi quốc gia. Do đó, với mục tiêu đưa ra các dự báo kịp thời và phù hợp trong tương lai, nhóm nghiên cứu sẽ tiếp tục xây dựng và triển khai các mô hình với dữ liệu tần suất khác nhau để dự báo cho các chỉ số kinh tế vĩ mô của Việt Nam.


Tài liệu tham khảo:

1. BAŞER, U., BOZOĞLU, M., EROĞLU, N. A., & TOPUZ, B. K. (2018). Forecasting chestnut production and export of Turkey using ARIMA model. Turkish Journal of Forecasting, 2(2), 27-33.

2. Bin, J., & Tianli, X. (2020). Forecast of export demand based on artificial neural network and fuzzy system theory. Journal of Intelligent & Fuzzy Systems, (Preprint), 1 - 9.

3. Bui, T. M. N., Nguyen, T. Q. N., & Nguyen, T. Q. C. (2019). Using Arima model in forecasting the value of Vietnam’s exports. Journal of finance & accounting research, Vol. 186, No. 1, p. 58.

4. Bussière, M., Fidrmuc, J., Schnatz, B. (2005), Trade integration of Central and Eastern European countries: Lessons from a gravity model. ECB Working Article, No. 545;

5. Dung, T. T. M., Tuan, V. T., Huong, D. T. M., & Luan, N. M. (2014). Applying quantitative methods in forecasting pangasius exports. Scientific Journal of Can Tho University, p. 123 - 132.

6. Eckert, F., Hyndman, R. J., & Panagiotelis, A. (2019). Forecasting Swiss exports using Bayesian forecast reconciliation (No. 457). KOF Working Papers.

7. Feenstra, R. C. (2015). Advanced international trade: theory and evidence. Princeton university press.

8. Foroni, C., & Marcellino, M. G. (2013). A survey of econometric methods for mixed-frequency data. Available at SSRN 2268912.

9. Ghysels, Eric, Pedro Santa-Clara, and Rossen Valkanov (2004). “The MIDAS Touch: Mixed Data Sampling Regression Models”. Powered by the California Digital Library University of California, 34p. https://escholarship.org/uc/item/9mf223rs.

10. Hai, N. M., Dung, N. D., Thanh, D. V., & Lam, P. N (2020). Building Export Value Forecast Model Using Dimensional Reduction Method Based on Kernel Technique. The XXIII National Conference: Some Selected Issues of Information and Communication Technology.

11. IMF, “IMF Country Report No. 21/42,” 2021.

12. Kuzin, V., Marcellino, M., & Schumacher, C. (2011). MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area. International Journal of Forecasting, 27(2), 529-542.

13. Le, N. B. N., T. A., & Le, L. Q. T. (2018). Forecast model for shrimp export prices of Vietnam. Scientific Journal of Can Tho University, p. 188-195.

14. Lehmann, R. (2015). Survey-based indicators vs. hard data: What improves export forecasts in Europe? (No. 196). ifo Working Paper.

15. Mariano, R., and Y. Murasawa (2010): “A coincident index, common factors, and monthly real GDP”, Oxford Bulletin of Economics and Statistics, 72(1), 27 - 46.

16. Pyo, H. K., & Oh, S. H. (2016). A Short-term Export Forecasting Model using Input-Output Tables.

17. Qu, Q., Li, Z., Tang, J., Wu, S., & Wang, R. (2019). A Trend Forecast of Import and Export Trade Total Volume based on LSTM. In IOP Conference Series: Materials Science and Engineering (Vol. 646, No. 1, p. 012002). IOP Publishing.

18. Schorfheide, F., and D. Song (2011): “Real-time forecasting with a mixed frequency VAR”, mimeo.

19. Siggel, E. (2006). International competitiveness and comparative advantage: a survey and a proposal for measurement. Journal of Industry, competition and trade, 6(2), 137-159.

20. Stoevsky, G. (2009). Econometric Forecasting of Bulgaria’s Export and Import Flows. Bulgarian National Bank Discussion Articles DP/77/2009.

21. T. N. A. Nguyen, T. H. H. Pham, and T. Vallée, “Trade Volatility in the Association of Southeast Asian Nations Plus Three: Impacts and Determinants,” Asian Dev. Rev., vol. 37, no. 2, pp. 167 – 200, 2020.

22. Urrutia, J. D., Abdul, A. M., & Atienza, J. B. E. (2019). Forecasting Philippines imports and exports using Bayesian artificial neural network and autoregressive integrated moving average. In AIP Conference Proceedings (Vol. 2192, No. 1, p. 090015). AIP Publishing LLC.

23. World Bank (2020) World Development Indicator.

24. Xie, Q., & Xie, Y. (2009). Forecast of the total volume of import-export trade based on grey modelling optimized by genetic algorithm. In 2009 Third International Symposium on Intelligent Information Technology Application (Vol. 1, pp. 545-547). IEEE.

TS. Lê Mai Trang, TS. Hoàng Anh Tuấn,
ThS. Nguyễn Thị Hiên, ThS. Đinh Thị Hà, ThS. Trần Kim Anh

Trường Đại học Thương mại

https://tapchinganhang.gov.vn

Tin bài khác

Ứng dụng mô hình hồi quy nhị phân trong việc dự đoán rủi ro phá sản của các doanh nghiệp trên thị trường chứng khoán

Ứng dụng mô hình hồi quy nhị phân trong việc dự đoán rủi ro phá sản của các doanh nghiệp trên thị trường chứng khoán

Phân tích báo cáo tài chính cung cấp thông tin rõ ràng về tình hình tài chính, vốn và công nợ của doanh nghiệp, giúp nhà quản trị đưa ra các quyết định điều hành và đầu tư chính xác. Nghiên cứu cho thấy có sự khác biệt rõ rệt giữa các chỉ số tài chính của nhóm doanh nghiệp có nguy cơ phá sản và nhóm doanh nghiệp không có nguy cơ phá sản. Các doanh nghiệp có nguy cơ phá sản thường có chỉ số tài chính không ổn định (quá cao hoặc quá thấp) so với các doanh nghiệp hoạt động bình thường.
Dự đoán xu hướng sử dụng công nghệ mới của người dùng thông qua chỉ số sẵn sàng công nghệ

Dự đoán xu hướng sử dụng công nghệ mới của người dùng thông qua chỉ số sẵn sàng công nghệ

Những năm gần đây, với sự chuyển đổi số mạnh mẽ và sự phát triển không ngừng của các công nghệ tiên tiến, việc đo lường mức độ chấp nhận và sử dụng công nghệ mới của người dùng trở nên quan trọng hơn bao giờ hết. Sự sẵn sàng áp dụng công nghệ của một cá nhân sẽ phản ánh khuynh hướng chấp nhận công nghệ của họ trong các hoạt động thường ngày. Để đánh giá chính xác xu hướng này, Chỉ số sẵn sàng công nghệ đã trở thành một công cụ hữu ích, giúp đo lường tâm lý, thái độ và hành vi của người dùng đối với các ứng dụng công nghệ. Từ đó, doanh nghiệp và các nhà nghiên cứu có thể hiểu rõ hơn về mức độ sẵn sàng áp dụng công nghệ của các đối tượng mục tiêu, cũng như dự báo xu hướng phát triển của thị trường.
Nghiên cứu nhân tố ảnh hưởng đến ý định sử dụng các nền tảng cho vay ngang hàng của sinh viên

Nghiên cứu nhân tố ảnh hưởng đến ý định sử dụng các nền tảng cho vay ngang hàng của sinh viên

Để đánh giá nhân tố ảnh hưởng đến ý định sử dụng các nền tảng cho vay ngang hàng, nghiên cứu này sử dụng phương pháp định lượng kết hợp với định tính. Quy trình nghiên cứu được thực hiện theo các bước: Thống kê mô tả, đánh giá độ tin cậy của thang đo thông qua kiểm định Cronbach’s Alpha, phân tích nhân tố khám phá (EFA), phân tích hồi quy tuyến tính bội và kiểm định giả thuyết. Nhóm nghiên cứu sử dụng dữ liệu sơ cấp được thu thập thông qua việc gửi phiếu khảo sát dưới hình thức online đến sinh viên các trường đại học.
Giải pháp cho quyền tiếp cận đất đai của tổ chức kinh tế có vốn đầu tư nước ngoài

Giải pháp cho quyền tiếp cận đất đai của tổ chức kinh tế có vốn đầu tư nước ngoài

Quyền tiếp cận đất đai của các tổ chức kinh tế có vốn đầu tư nước ngoài đóng vai trò quan trọng trong việc thu hút nguồn vốn đầu tư, thúc đẩy phát triển kinh tế và hiện đại hóa đất nước. Tuy nhiên, quá trình này vẫn gặp phải nhiều bất cập do những hạn chế về pháp lý, thủ tục hành chính phức tạp, thời hạn sử dụng đất ngắn và thiếu sự minh bạch trong quản lý đất đai. Các rào cản này không chỉ làm giảm sức hút của môi trường đầu tư Việt Nam mà còn cản trở sự phát triển bền vững của các dự án FDI. Để nâng cao hiệu quả quyền tiếp cận đất đai của các tổ chức kinh tế có vốn đầu tư nước ngoài, cần thực hiện đồng bộ các giải pháp...
Ứng dụng sinh trắc học trong hoạt động ngân hàng - Thực trạng và một số giải pháp nâng cao hiệu quả

Ứng dụng sinh trắc học trong hoạt động ngân hàng - Thực trạng và một số giải pháp nâng cao hiệu quả

Ứng dụng sinh trắc học trong hoạt động ngân hàng mang lại nhiều lợi ích vượt trội, góp phần hiện đại hóa hoạt động, nâng cao trải nghiệm khách hàng và bảo đảm an toàn giao dịch. Các công nghệ sinh trắc học phổ biến như nhận diện khuôn mặt, quét vân tay, mống mắt hay xác thực giọng nói... không chỉ cải thiện quy trình vận hành mà còn gia tăng mức độ tin cậy trong các giao dịch tài chính.
Tính độc lập của thư tín dụng và ngoại lệ gian lận: Thực tiễn áp dụng tại một số quốc gia và đề xuất cho Việt Nam

Tính độc lập của thư tín dụng và ngoại lệ gian lận: Thực tiễn áp dụng tại một số quốc gia và đề xuất cho Việt Nam

Phương thức thanh toán bằng L/C được các doanh nghiệp sử dụng rộng rãi trong quá trình thực hiện hợp đồng mua bán hàng hóa quốc tế. Phương thức thanh toán này giúp các bên giảm thiểu rủi ro do khoảng cách về địa lý và sự khác biệt của pháp luật giữa các quốc gia.
Cơ hội và thách thức của ngành Ngân hàng trong việc đạt mục tiêu ESG

Cơ hội và thách thức của ngành Ngân hàng trong việc đạt mục tiêu ESG

Trong bối cảnh toàn cầu đang đối mặt với những thách thức lớn từ biến đổi khí hậu, bất bình đẳng xã hội và sự thiếu minh bạch trong quản trị, khái niệm ESG đã nổi lên như một giải pháp không thể thiếu để hướng tới sự phát triển bền vững.
Tác động của việc triển khai thuế tối thiểu toàn cầu đến kinh tế các nước trên thế giới và khuyến nghị cho Việt Nam

Tác động của việc triển khai thuế tối thiểu toàn cầu đến kinh tế các nước trên thế giới và khuyến nghị cho Việt Nam

Việc xây dựng thể chế thuế tối thiểu toàn cầu là một vấn đề quan trọng trong bối cảnh nền kinh tế toàn cầu ngày càng phát triển và hội nhập. Một trong những yếu tố cần thiết để xây dựng hệ thống thuế tối thiểu toàn cầu là có một khung pháp lý rõ ràng và minh bạch, tạo sự tin tưởng cho các doanh nghiệp và nhà đầu tư.
Xem thêm
Đột phá thể chế, pháp luật để đất nước vươn mình

Đột phá thể chế, pháp luật để đất nước vươn mình

Ngày 4/5, Tổng Bí thư Ban Chấp hành trung ương Đảng cộng sản Việt Nam Tô Lâm đã có bài viết, trong đó nêu rõ các yêu cầu mục tiêu; những nhiệm vụ, giải pháp cơ bản để đưa Nghị quyết số 66-NQ/TW ngày 30/04/2025 của Bộ Chính trị vào cuộc sống, mang lại những kết quả thiết thực trong đổi mới công tác xây dựng và thi hành pháp luật đáp ứng yêu cầu phát triển đất nước trong kỷ nguyên mới. Xin trân trọng giới thiệu toàn văn bài viết của đồng chí Tổng Bí thư.
Cơ chế thử nghiệm có kiểm soát trong lĩnh vực ngân hàng

Cơ chế thử nghiệm có kiểm soát trong lĩnh vực ngân hàng

Chính phủ đã ban hành Nghị định số 94/2025/NĐ-CP quy định về Cơ chế thử nghiệm có kiểm soát trong lĩnh vực ngân hàng.
Cấp thiết hoàn thiện pháp luật về tài sản bảo đảm là tài sản số, tín chỉ carbon

Cấp thiết hoàn thiện pháp luật về tài sản bảo đảm là tài sản số, tín chỉ carbon

Cùng với sự phát triển nhanh chóng của nền kinh tế số và quá trình chuyển đổi xanh, vấn đề đặt ra hiện nay là liệu các loại tài sản mới như tài sản số, tín chỉ carbon có thể và sẽ được chấp nhận như thế nào với vai trò là tài sản bảo đảm cho khoản vay tại các tổ chức tín dụng ở Việt Nam. Các chuyên gia trong nước và quốc tế đều cùng chung nhận định đó là cần sớm hoàn thiện pháp luật về tài sản bảo đảm là tài sản số, tín chỉ carbon tại Hội thảo “Tài sản bảo đảm ngân hàng - Những vấn đề quan tâm hiện nay” do Thời báo Ngân hàng tổ chức ngày 28/4/2025.
Những rào cản trong phát triển kinh tế tuần hoàn tại doanh nghiệp và một số giải pháp khắc phục

Những rào cản trong phát triển kinh tế tuần hoàn tại doanh nghiệp và một số giải pháp khắc phục

Trong bối cảnh cuộc Cách mạng công nghiệp lần thứ tư đang diễn ra mạnh mẽ, để đạt được sự phát triển bền vững và hài hòa mối quan hệ giữa tăng trưởng kinh tế và bảo vệ môi trường, việc chuyển đổi mô hình kinh tế từ tuyến tính truyền thống sang nền kinh tế tuần hoàn là hướng đi đúng đắn, phù hợp với chủ trương chính sách của Đảng và Nhà nước ta.
Doanh nghiệp Việt Nam cần có chiến lược linh hoạt, kịp thời để đối phó với thách thức và tận dụng cơ hội từ thị trường nội địa, quốc tế

Doanh nghiệp Việt Nam cần có chiến lược linh hoạt, kịp thời để đối phó với thách thức và tận dụng cơ hội từ thị trường nội địa, quốc tế

Trong bối cảnh các chính sách thuế quan và các biện pháp thương mại quốc tế đang thay đổi nhanh chóng, doanh nghiệp Việt Nam cần phải có những chiến lược linh hoạt và kịp thời để đối phó với những thách thức, đồng thời tận dụng các cơ hội từ thị trường nội địa và quốc tế.
Sự ổn định tài chính của các ngân hàng thương mại châu Á: Vai trò của cạnh tranh thị trường, chất lượng thể chế và kinh tế vĩ mô

Sự ổn định tài chính của các ngân hàng thương mại châu Á: Vai trò của cạnh tranh thị trường, chất lượng thể chế và kinh tế vĩ mô

Nghiên cứu này được thực hiện nhằm đánh giá tác động của cạnh tranh thị trường, chất lượng thể chế và các yếu tố kinh tế vĩ mô tới sự ổn định tài chính của các ngân hàng thương mại tại châu Á. Nhóm nghiên cứu sử dụng bộ dữ liệu bảng gồm 43.232 quan sát từ 1.093 ngân hàng thương mại ở các nước châu Á trong giai đoạn quý I/2008 đến quý I/2024. Bằng cách tiếp cận theo phương pháp hồi quy 2SLS, nghiên cứu đã khắc phục được vấn đề nội sinh trong mô hình và mang lại các kết quả ước lượng vững. Kết quả nghiên cứu cho thấy mối quan hệ cùng chiều giữa chỉ số Lerner và Z-score hay cạnh tranh thị trường có ảnh hưởng tiêu cực đến sự ổn định tài chính của các ngân hàng thương mại.
Đánh giá thực tiễn triển khai CBDC tại ngân hàng trung ương của một số quốc gia trên thế giới và khuyến nghị đối với Việt Nam

Đánh giá thực tiễn triển khai CBDC tại ngân hàng trung ương của một số quốc gia trên thế giới và khuyến nghị đối với Việt Nam

Đối với Việt Nam, CBDC có thể đóng vai trò quan trọng trong việc hiện đại hóa hệ thống thanh toán, tăng cường tài chính toàn diện và nâng cao hiệu quả giám sát tiền tệ. Tuy nhiên, để triển khai thành công, cần có một chiến lược rõ ràng, bao gồm: Xác định rõ mục tiêu của CBDC, xây dựng khung pháp lý toàn diện, đầu tư vào hạ tầng công nghệ, thử nghiệm các mô hình triển khai phù hợp và thúc đẩy hợp tác quốc tế để đảm bảo tính tương thích với hệ thống tài chính toàn cầu.
Kinh nghiệm quốc tế về mô hình chuyển đổi số báo chí và một số khuyến nghị đối với lĩnh vực  truyền thông ngành Ngân hàng Việt Nam

Kinh nghiệm quốc tế về mô hình chuyển đổi số báo chí và một số khuyến nghị đối với lĩnh vực truyền thông ngành Ngân hàng Việt Nam

Chuyển đổi số mang lại cơ hội cũng như thách thức lớn đối với hoạt động truyền thông, báo chí ngành Ngân hàng Việt Nam. Việc áp dụng công nghệ không chỉ giúp báo chí gia tăng khả năng truyền tải thông tin, mà còn làm thay đổi phương thức quản lý, sản xuất và phân phối tin tức. Điều này đòi hỏi báo chí ngành Ngân hàng phải đổi mới mô hình tổ chức, bảo đảm tính linh hoạt và sáng tạo.
Thông điệp sau làn sóng tăng thuế đối ứng của Mỹ

Thông điệp sau làn sóng tăng thuế đối ứng của Mỹ

Chính quyền Mỹ cho biết, khi xác định mức thuế quan đối ứng cho mỗi quốc gia, họ không chỉ xem xét thuế nhập khẩu mà còn các hoạt động khác mà họ cho là không công bằng, bao gồm thuế giá trị gia tăng, trợ cấp của chính phủ, chiến lược thao túng tiền tệ, chuyển nhượng công nghệ và các vấn đề liên quan đến sở hữu trí tuệ.
Vươn mình trong hội nhập quốc tế

Vươn mình trong hội nhập quốc tế

Tổng Bí thư Tô Lâm có bài viết với tiêu đề "Vươn mình trong hội nhập quốc tế". Trân trọng giới thiệu toàn văn bài viết của đồng chí Tổng Bí thư.

Nghị định số 26/2025/NĐ-CP của Chính phủ ngày 24/02/2025 quy định chức năng, nhiệm vụ, quyền hạn và cơ cấu tổ chức của Ngân hàng Nhà nước Việt Nam

Thông tư số 59/2024/TT-NHNN ngày 31/12/2024 Sửa đổi, bổ sung một số điều của Thông tư số 12/2021/TT-NHNN ngày 30 tháng 7 của 2021 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về việc tổ chức tín dụng, chi nhánh ngân hàng nước ngoài mua, bán kỳ phiếu, tín phiếu, chứng chỉ tiền gửi, trái phiếu do tổ chức tín dụng, chi nhánh ngân hàng nước ngoài khác phát hành trong nước

Thông tư số 60/2024/TT-NHNN ngày 31/12/2024 Quy định về dịch vụ ngân quỹ cho tổ chức tín dụng, chi nhánh ngân hàng nước ngoài

Thông tư số 61/2024/TT-NHNN ngày 31/12/2024 Quy định về bảo lãnh ngân hàng

Thông tư số 62/2024/TT-NHNN ngày 31/12/2024 Quy định điều kiện, hồ sơ, thủ tục chấp thuận việc tổ chức lại ngân hàng thương mại, tổ chức tín dụng phi ngân hàng

Thông tư số 63/2024/TT-NHNN ngày 31/12/2024 Quy định về hồ sơ, thủ tục thu hồi Giấy phép và thanh lý tài sản của tổ chức tín dụng, chi nhánh ngân hàng nước ngoài; hồ sơ, thủ tục thu hồi Giấy phép văn phòng đại diện tại Việt Nam của tổ chức tín dụng nước ngoài, tổ chức nước ngoài khác có hoạt động ngân hàng

Thông tư số 64/2024/TT-NHNN ngày 31/12/2024 Quy định về triển khai giao diện lập trình ứng dụng mở trong ngành Ngân hàng

Thông tư số 57/2024/TT-NHNN ngày 24/12/2024 Quy định hồ sơ, thủ tục cấp Giấy phép lần đầu của tổ chức tín dụng phi ngân hàng

Thông tư số 56/2024/TT-NHNN ngày 24/12/2024 Quy định hồ sơ, thủ tục cấp Giấy phép lần đầu của ngân hàng thương mại, chi nhánh ngân hàng nước ngoài, văn phòng đại diện nước ngoài

Thông tư số 55/2024/TT-NHNN ngày 18/12/2024 Sửa đổi khoản 4 Điều 2 Thông tư số 19/2018/TT-NHNN ngày 28 tháng 8 năm 2018 của Thống đốc Ngân hàng Nhà nước Việt Nam hướng dẫn về quản lý ngoại hối đối với hoạt động thương mại biên giới Việt Nam - Trung Quốc