Phương pháp phát hiện dữ liệu bất thường trong giám sát trực tuyến an toàn thông tin tài chính, ngân hàng

Nghiên cứu - Trao đổi
Hoạt động của ngành tài chính, ngân hàng đóng một vai trò quan trọng trong việc thiết lập sự ổn định tài chính của mỗi quốc gia. Hơn nữa, sự gia tăng dân số, phát triển kinh tế và công nghệ đã đẩy mạnh nhu cầu sử dụng các dịch vụ ngân hàng, tài chính của người dân một cách an toàn, hiệu quả.
aa

Tóm tắt: Trong những năm gần đây, nhiều nhà khoa học đã nghiên cứu, mô hình hóa các bài toán chuỗi thời gian thực tế trong lĩnh vực tài chính, ngân hàng và ứng dụng các kỹ thuật học máy thống kê để giải quyết chúng. Trong đó, bài toán phát hiện dữ liệu bất thường trong kịch bản trực tuyến là một trong những bài toán được quan tâm rộng rãi bởi khả năng ứng dụng cao trong các quá trình giám sát, phân tích dữ liệu thu thập được và báo cáo các quan sát bất thường để đảm bảo môi trường vận hành an toàn. Trong kịch bản trực tuyến, mô hình chỉ sử dụng dữ liệu lịch sử và thuật toán phát hiện bất thường cần đảm bảo thời gian thực thi thấp. Phương pháp phổ biến thường được sử dụng là giả định dữ liệu tuân theo phân phối chuẩn và dùng thuật toán ngưỡng để phân loại. Trong bài viết này, chúng tôi đề xuất một thuật toán hai bước sử dụng thuật toán ngưỡng để tiền phân loại và phương pháp phân cụm để xác nhận nhãn của điểm dữ liệu mới nhằm làm giảm tỷ lệ dương tính giả và âm tính giả. Các thí nghiệm được thực hiện trên hai bộ dữ liệu bao gồm một bộ dữ liệu tự sinh và một bộ dữ liệu thực mô tả các giao dịch bằng thẻ tín dụng của khách hàng ở châu Âu. Kết quả thực nghiệm chỉ ra rằng, thuật toán đề xuất làm giảm đáng kể tỷ lệ dương tính giả và âm tính giả so với thuật toán thường hay sử dụng. Mô hình và thuật toán đề xuất có thể được ứng dụng rộng rãi trong các hệ thống giám sát thông tin giúp các ngân hàng, tổ chức tài chính kịp thời phát hiện các cuộc tấn công hoặc gian lận trong sử dụng dịch vụ.

Từ khóa: Phát hiện bất thường, giám sát trực tuyến, gian lận tài chính.

A PROPOSED ABNORMAL DETECTION ALGORITHM FOR MONITORING INFORMATION SECURITY OF BANKING AND FINANCE IN ONLINE SCENARIO

Abstract: Recently, many researchers have studied problems of time series processes in banking and finance sector and applied statistical learning techniques to solve them. In particular, the abnormal detection problem in an online scenario is one of the most widely-studied problems due to its high applicability in information security. In the online scenario, abnormal detection models are required to use only historical data and ensure low execution time. The popular statistical approaches often assumed that data followed a normal distribution and used threshold values for classification. In this paper, we propose a new two-step algorithm for abnormal detection in the online scenario. The first step uses a threshold algorithm to predict a label of a new data point. The second step validates the predicted label by using a clustering method to reduce the false-positive and false-negative rates. Experimental results on an artificial dataset and a real credit card transaction dataset show the efficiency and applicability of the proposed algorithm for information monitoring and abnormal warning in the banking and finance sector.


Keywords: Abnormal detection, online monitoring, financial fraud.

I. Giới thiệu


Hoạt động của ngành tài chính, ngân hàng đóng một vai trò quan trọng trong việc thiết lập sự ổn định tài chính của mỗi quốc gia. Hơn nữa, sự gia tăng dân số, phát triển kinh tế và công nghệ đã đẩy mạnh nhu cầu sử dụng các dịch vụ ngân hàng, tài chính của người dân một cách an toàn, hiệu quả. Do đó, những người ra quyết định trong ngành này rất cần các công cụ phân tích dữ liệu lớn để dự đoán, phân loại thông tin, kịp thời đưa ra các cảnh báo khi dữ liệu thu thập được có dấu hiệu bất thường. Trong những năm gần đây, nhiều nhà nghiên cứu đã mô hình hóa các bài toán chuỗi thời gian thực tế trong lĩnh vực tài chính, ngân hàng và ứng dụng các kỹ thuật học máy để giải quyết chúng. Trong đó, bài toán phát hiện dữ liệu bất thường trong kịch bản trực tuyến là một trong những bài toán được quan tâm rộng rãi bởi khả năng ứng dụng cao trong các quá trình giám sát, phân tích dữ liệu thu thập được và báo cáo bất kỳ quan sát bất thường nào để đảm bảo môi trường hoạt động và vận hành an toàn. Đây là một chủ đề có tính ứng dụng cao do hầu hết dữ liệu hoạt động và vận hành đều đến từ các quá trình ngẫu nhiên theo thời gian (ví dụ như số lượt đọc/ghi dữ liệu hằng giờ của một máy trạm, phần trăm sử dụng tài nguyên số của một nhân viên ngân hàng hằng ngày, số lượt truy cập vào một trang web, hay các giao dịch tín dụng). Việc giám sát và phát hiện dữ liệu bất thường theo thời gian thực cho phép người điều hành kịp thời ngăn chặn và khắc phục các hành vi gian lận hay phá hoại.

Hình 1: Ví dụ minh họa các điểm bất thường trong quá trình ngẫu nhiên theo thời gian

Bài toán phát hiện bất thường đề cập đến việc nhận dạng tự động các hiện tượng ngoại lệ được nhúng trong một lượng lớn dữ liệu bình thường (outlier detection) hoặc không lường trước được xuất hiện theo thời gian thực (novelty detection) (Hình 1). Trong các quá trình ngẫu nhiên theo thời gian, điểm ngoại lệ (outlier) thường được dùng để biểu diễn những quan sát bất thường chỉ kéo dài trong chốc lát, sau đó chuỗi thời gian trở lại bình thường. Điều này có nghĩa là chúng ta đã thu thập được các quan sát trong một khoảng thời gian trước và sau điểm ngoại lệ. Do đó, nó thường được áp dụng cho các bài toán phát hiện điểm bất thường dạng thức ngoại tuyến (offline detection). Trong bối cảnh dữ liệu đến theo thời gian thực (streaming data), có hai ràng buộc bổ sung đối với việc thiết kế mô hình phát hiện bất thường là:

- Mô hình chỉ có thể sử dụng dữ liệu lịch sử để thực hiện phát hiện.

- Việc phát hiện phải được thực hiện trong một khoảng thời gian nhất định (ngắn).

Nếu hai yêu cầu này được thỏa mãn, phương pháp này được gọi là phát hiện bất thường trực tuyến (Online detection).

Phát hiện bất thường là một chủ đề đầy thách thức, chủ yếu là do khó có đủ kiến thức và định nghĩa chính xác của “tính bất thường” trong một vấn đề cụ thể, điều này làm giảm hiệu quả của việc sử dụng những kỹ thuật học giám sát. Trong nhiều trường hợp, không có định nghĩa chung được đưa ra cho tính bất thường trước khi phát hiện. Đồng thời, dữ liệu bất thường được nhúng trong một lượng lớn dữ liệu bình thường là không đủ để xây dựng một lớp mới để có thể phân loại. Do đó, phương pháp phát hiện mới, lạ được định nghĩa tốt nhất như một phương pháp học không giám sát, tức là không có nhãn nào có sẵn và việc phát hiện chỉ có thể dựa trên các thuộc tính nội tại của dữ liệu.

Bất chấp thách thức của nó, trong những năm gần đây, phát hiện bất thường trở thành một chủ đề ngày càng thu hút nhiều sự quan tâm và nhiều kỹ thuật đã được nghiên cứu, đề xuất để giải quyết. Các kỹ thuật này đã được thực nghiệm chứng minh là có hiệu quả trong một số trường hợp, trong khi chúng có thể thất bại trong các trường hợp khác. Ví dụ, một số phương pháp được thiết kế dựa trên giả định đã có các mô hình chính xác của vấn đề đang xem xét, hoặc giả định đã biết các điều kiện bất thường. Những giả định này thường không hiệu quả trong thế giới thực. Trong một số nghiên cứu khác, phát hiện bất thường được hiểu đơn giản là phát hiện ngoại lệ. Tuy nhiên, sự đơn giản hóa này tạo ra các phương pháp không thể phát hiện ra các mẫu mới được hình thành bởi các quá trình ngẫu nhiên theo thời gian. Đặc biệt, phương pháp phát hiện tính mới được đề xuất dựa trên một kỹ thuật máy vector hỗ trợ (Support Vector Machine - SVM), trong đó, một số mẫu mới buộc phải được xác định trước trong tập dữ liệu đã có. Thay vì sử dụng thuật toán One-class SVM, các phương pháp phân loại bán giám sát cũng đã được phát triển trong đó mô hình được huấn luyện trên một số tập mẫu nhỏ đã được gán nhãn bình thường và bất thường, phương pháp phân loại không giám sát cũng được sử dụng cho phép tính điểm bất thường trong không gian được chiếu. Các tác giả Nguyen, H.T và Thái, NH (2019) đã đề xuất phương pháp phát hiện điểm bất thường trong cả kịch bản ngoại tuyến và trực tuyến, ứng dụng cho cả dữ liệu thời gian và không gian cho các cảm biến không dây. Phương pháp đề xuất được cải tiến từ phương pháp Hampel, dựa trên ngưỡng (rule-based), có thời gian thực thi thấp nên có khả năng ứng dụng cho các hệ thống giám sát trực tuyến. Mô hình có hạn chế là sử dụng giả định biết trước phân phối của dữ liệu và là dữ liệu độc lập và đồng nhất (IID). Tuy nhiên, nếu dữ liệu là không dừng (nonstationary), chẳng hạn như tồn tại các xu hướng hoặc tính thời vụ, thì phương pháp này có thể nhận được nhiều kết quả dương tính giả và/hoặc âm tính giả. Ví dụ, một điểm có thể được coi là bất thường nếu không tính đến yếu tố mùa vụ (season) nhưng được coi là một điểm bình thường nếu xem xét thêm yếu tố mùa vụ. Do đó, trong kịch bản trực tuyến, việc không có dữ liệu khiến việc xác định điểm bất thường trở nên phức tạp hơn rất nhiều và vẫn là chủ đề nghiên cứu có tính thời sự.

Trong bài viết này, chúng tôi xem xét một quá trình ngẫu nhiên thời gian rời rạc và đề xuất một thuật toán phi tham số cải tiến từ thuật toán ngưỡng nhằm làm giảm tỷ lệ dương tính giả (dữ liệu mới bị coi là điểm bất thường do nằm ngoài ngưỡng cho phép nhưng đã được phản ánh bởi một số ít dữ liệu trong quá khứ có tính mùa vụ) và giảm tỷ lệ âm tính giả (dữ liệu mới được coi là bình thường do nằm trong ngưỡng cho phép nhưng không được phản ánh bởi dữ liệu trong quá khứ). Thuật toán của chúng tôi được chia thành hai bước. Bước thứ nhất sử dụng thuật toán ngưỡng để tiền phân loại điểm dữ liệu mới. Bước thứ hai sử dụng thuật toán phân cụm để xác thực nhãn của điểm dữ liệu mới. Bước xác thực này làm giảm khả năng xảy ra ngụy biện sinh thái (Ecological fallacy). Do đó, làm giảm tỷ lệ dương tính giả và âm tính giả. Các thí nghiệm được thực hiện trên hai bộ dữ liệu bao gồm một bộ dữ liệu tự sinh và một bộ dữ liệu thực mô tả các giao dịch bằng thẻ tín dụng của người dùng ở châu Âu. Kết quả thực nghiệm chỉ ra rằng, thuật toán đề xuất giúp giảm thiểu đáng kể số lượng dương tính giả và âm tính giả so với thuật toán ngưỡng. Mô hình và thuật toán đề xuất có thể được ứng dụng rộng rãi trong các hệ thống giám sát thông tin giúp các ngân hàng, tổ chức tài chính kịp thời phát hiện các cuộc tấn công hoặc gian lận trong sử dụng dịch vụ.

II. Phát biểu bài toán

Cho một quá trình ngẫu nhiên thời gian rời rạc đại diện bởi χ(t) trong đó t=t0,t1,…,tN và xj là một trong những quan sát (các quan sát tuần tự theo thời gian rời rạc được gọi chung là điểm dữ liệu) của quá trình x tại thời điểm tj. Các quan sát này có thể là sự kiện, số lượt đọc/ghi dữ liệu, phần trăm sử dụng tài nguyên, ảnh, video, hoặc bất kỳ đối tượng nào được thu thập theo thời gian. Đặt Sn-1={x0,x1,…,xn-1} là một mẫu bao gồm toàn bộ quan sát thu thập được của quá trình x tính đến thời điểm tn-1. Tại thời điểm tn, hệ thống giám sát dữ liệu trực tuyến tiếp nhận quan sát mới xn. Hệ thống phân tích dữ liệu cần dựa trên mẫu Sn-1 đã thu thập được để phân loại xn là điểm bình thường hay bất thường với thời gian thực thi thấp.

III. Phương pháp đề xuất

Thuật toán ngưỡng (RB) sử dụng tham số ngưỡng để kiểm tra một điểm dữ liệu mới là bình thường (nếu nằm trong khoảng cho phép) hay bất thường. Ngưỡng thường được sử dụng là [μ-3σ, μ+3σ], trong đó dữ liệu được giả định tuân theo phân phối chuẩn, μ là giá trị trung bình, σ là phương sai. Ngưỡng này dựa trên quy tắc thực nghiệm được mô tả như sau:

Cho X là quan sát từ biến ngẫu nhiên có phân phối chuẩn, μ là giá trị trung bình của phân phối và σ là độ lệch chuẩn của nó, xác suất (P) để các giá trị của X nằm trong các khoảng tương ứng là:

P(μ - 1σ ≤ X ≤ μ + 1σ) ≈ 68,27%

P(μ - 2σ ≤ X ≤ μ + 2σ) ≈ 95,45%

P(μ - 3σ ≤ X ≤ μ + 3σ) ≈ 99,73%

Trong lý thuyết xác suất, bất đẳng thức Chebyshev tổng quát hơn, chứng minh rằng tối thiểu chỉ 75% giá trị phải nằm trong hai độ lệch chuẩn của giá trị trung bình và 88,89% trong ba độ lệch chuẩn đối với các phân phối xác suất khác nhau, tức là áp dụng cho các phân phối xác suất nói chung chứ không chỉ dành cho phân phối chuẩn. Cụ thể là:

P(|X - μ| ≥ m.σ) ≤ 1/m2

Tuy nhiên, một điểm dữ liệu mới có thể được phân loại là bình thường bởi thuật toán ngưỡng (thuộc khoảng [μ-3σ, μ+3σ]) nhưng nó thực sự có phân bố khác với các điểm dữ liệu trong lịch sử (âm tính giả), hoặc nó được phân loại là bất thường nhưng đã từng xảy ra có tính chu kỳ (dương tính giả). Ví dụ minh họa cho các trường hợp này được thể hiện trong Hình 2.

Hình 2: Minh họa một số trường hợp thất bại của thuật toán ngưỡng


Trong bài viết này, chúng tôi đề xuất một thuật toán cải tiến từ thuật toán ngưỡng mới (đặt tên là CRB) bằng cách sử dụng bất đẳng thức Chebyshev để làm ngưỡng tiền phân loại và kết hợp thuật toán phân cụm để xác thực nhãn của điểm dữ liệu. Với mục tiêu làm giảm tỷ lệ dương tính giả và âm tính giả, thuật toán phân cụm được sử dụng để phân chia dữ liệu thành các cụm có tính đại diện và xem xét tính gắn kết giữa các quan sát trong cụm. Thuật toán k-means được sử dụng để phân cụm dữ liệu trong đó k ≥ m để đảm bảo bán kính lớn nhất của các cụm không vượt quá một phương sai σ. Một cụm có tính đại diện là cụm có số lượng quan sát tối thiểu để được coi là có sự tồn tại của yếu tố mùa vụ. Số lượng quan sát tối thiểu thường được xác định theo kinh nghiệm, một giá trị trong khoảng [3, 5] thường được sử dụng trong hầu hết các vấn đề. Mức độ gắn kết (d) của các quan sát trong cụm ci có tâm là oi được đo bởi trung bình của bình phương khoảng cách từ các quan sát tới tâm cụm:


Với sz(ci) là số lượng quan sát được phân vào cụm ci, ∀i= (1,k). Độ đo này có lợi thế về mặt thời gian tính toán do tử số đã được tính trong quá trình phân cụm bởi thuật toán k-means. Quá trình thực thi của thuật toán đề xuất được mô tả trực quan trong Hình 3.

Hình 3: Thuật toán CRB phát hiện điểm dữ liệu bất thường trong kịch bản trực tuyến


Ở bước tiền phân loại, thuật toán RB được sử dụng để xác định phân loại của điểm dữ liệu mới. Ngưỡng được tính dựa trên tất cả các điểm dữ liệu lịch sử đã thu thập được (suy luận quần thể). Nếu điểm dữ liệu mới nằm trong ngưỡng cho phép, nhãn của điểm dữ liệu này được xác thực là bình thường nếu nó thuộc một cụm có tính đại diện. Bước xác nhận này làm giảm khả năng xảy ra âm tính giả. Nếu điểm dữ liệu mới nằm ngoài ngưỡng cho phép, nó chỉ thực sự là điểm bất thường khi thêm nó vào cụm gần nhất sẽ làm giảm mức độ gắn kết tối thiểu của các cụm đã có. Bước xác nhận này làm giảm khả năng xảy ra dương tính giả. Việc kết hợp thuật toán ngưỡng (đóng vai trò suy luận dựa trên quần thể) và thuật toán phân cụm (suy luận dựa trên cụm cá thể) giúp làm giảm nguy cơ xảy ra ngụy biện sinh thái.

IV. Thực nghiệm

1. Dữ liệu

Trong bài viết này, chúng tôi sử dụng 02 bộ dữ liệu để thử nghiệm được mô tả như sau:

- Tập dữ liệu tự sinh (SD): Tái hiện từ Ma, Junshui và Perkins (2003) được tính theo công thức:


Trong đó, N=1200, n(t) là một nhiễu Gau với μ = 0, σ = 0,1

Với n1(t) là tuân theo phân phối chuẩn N(0, 0.5)


- Tập dữ liệu thực (RD): Chứa các giao dịch thực tế thực hiện bằng thẻ tín dụng của chủ thẻ châu Âu, thu thập bởi nhóm nghiên cứu Đại học Libre, Brussels, Bỉ (2015), trong đó có 492 gian lận được phát hiện trong tổng số 284.807 giao dịch. Các giao dịch đã được sắp xếp theo thứ tự thời gian giao dịch. Trong mô phỏng phát hiện giao dịch gian lận kịch bản trực tuyến, chúng tôi chỉ thực hiện trên 2.000 giao dịch đầu tiên để dễ dàng trình bày kết quả thí nghiệm.

2. Đánh giá hiệu quả của phương pháp đề xuất

Chúng tôi thực hiện mô phỏng thuật toán phát hiện điểm bất thường trong kịch bản trực tuyến với 500 điểm dữ liệu đầu tiên được coi là dữ liệu lịch sử (dùng để xác định các thuộc tính của phân phối dữ liệu). Với mỗi điểm dữ liệu tiếp theo, chúng tôi sử dụng thuật toán đề xuất CRB để xác định phân loại là bình thường hay bất thường. Kết quả được so sánh với thuật toán RB thông qua các chỉ số:

- FN (âm tính giả): Số điểm có nhãn là bất thường nhưng được phân loại là bình thường.

- TN (âm tính thật): Số điểm có nhãn là bình thường và được phân loại là bình thường.

- FP (dương tính giả): Số điểm có nhãn là bình thường nhưng được phân loại là bất thường.

- TP (dương tính thật): Số điểm có nhãn là bất thường và được phân loại là bất thường.


Hình 4: Kết quả phát hiện điểm bất thường cho tập dữ liệu SD



Hình 5: Kết quả phát hiện điểm bất thường cho tập dữ liệu RD


Hình 4 và 5 trực quan hóa các điểm dữ liệu theo thời gian. Trong Hình 4, một số điểm dữ liệu có giá trị cao bất thường đều đã được đánh dấu là điểm bất thường. Điểm bất thường đầu tiên mặc dù có giá trị không quá cao so với các điểm trước đó nhưng nó làm xuất hiện cụm mới chưa từng được phản ánh trong dữ liệu lịch sử. Do đó, nó cũng được coi là bất thường. Điều này xảy ra tương tự trong Hình 5. Hơn nữa, điểm bất thường đầu tiên trong Hình 5 có giá trị thấp hơn so với các điểm dữ liệu trước đó và cũng tạo cụm mới nên được xem như một điểm bất thường.

Bảng 1: Chỉ số đánh giá hiệu quả thuật toán


So với thuật toán ngưỡng RB, thuật toán CRB thể hiện sự hiệu quả thông qua chỉ số FN, FP và F1score. Dựa vào Bảng 1 ta thấy, thuật toán CRB thu được FN và FP đều thấp hơn hoặc bằng so với thuật toán RB. Tức là, thuật toán CRB giúp làm giảm tỷ lệ âm tính giả và dương tính giả so với thuật toán RB. Hơn nữa, do tính chất hiếm của các điểm bất thường nên chúng tôi sử dụng thêm chỉ số F1score để đánh giá hiệu quả giữa các thuật toán. Bảng 1 cũng chỉ ra thuật toán CRB có chỉ số F1score cao hơn trên cả hai bộ dữ liệu. Chúng tôi lưu ý rằng chỉ số F1score không phản ánh độ chính xác của phân loại so với nhãn sẵn có trong dữ liệu do định nghĩa điểm bất thường là khác nhau. Do đó, nhìn chung, thuật toán đề xuất của chúng tôi đem lại kết quả tốt hơn so với thuật toán ngưỡng khi có cùng định nghĩa điểm bất thường trên hai bộ dữ liệu này.

V. Kết luận

Để góp phần phát triển các kỹ thuật giám sát và đảm bảo an toàn thông tin trong lĩnh vực tài chính, ngân hàng, chúng tôi đã xem xét bài toán phát hiện điểm dữ liệu bất thường trực tuyến để kịp thời phát hiện thông tin đến từ các hoạt động phá hoại, gian lận và đưa ra cảnh báo. Chúng tôi đã đề xuất một thuật toán phát hiện bất thường dựa trên dữ liệu, được cải tiến từ thuật toán ngưỡng nhằm làm giảm tỷ lệ phân loại sai. Kết quả thực nghiệm trên cả bộ dữ liệu thực và tự sinh đã chỉ ra tính hiệu quả và khả năng ứng dụng thuật toán cho các bài toán thực tế. Đặc biệt, mô hình và thuật toán đề xuất có thể áp dụng rộng rãi cho các bài toán phát hiện bất thường trong lĩnh vực tài chính, ngân hàng có khối lượng giao dịch và thông tin cần xử lý hằng ngày là rất lớn, đòi hỏi tính chính xác cao và trả kết quả nhanh chóng. Với mục tiêu nâng cao an toàn hệ thống, các tổ chức tài chính, ngân hàng có thể áp dụng mô hình và thuật toán đề xuất để phát triển hệ thống giám sát và cảnh báo khi có các giao dịch hoặc hoạt động trên cơ sở dữ liệu bất thường.


Tài liệu tham khảo:

1. Dasgupta, Dipanker, and Stephanie, Forrest, Novelty Detection in Time Series Data Using Ideas from Immunology, In Proceedings of the 5th International Conference on Intelligent Systems, Reno, Nevada, June 19-21, 1996.

2. Ypma, Alexander, and Rober P. Duin, Novelty Detection Using Self-Organizing Maps, in Progress in Connectionist Based Information Systems, pp 1322-1325, London: Springer, 1997.

3. Keogh, E., S Lonardi, and W Chiu, Finding Surprising Patterns in a Time Series Database In Linear Time and Space, In the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 550-556, Edmonton, Alberta, Canada, July 23 - 26, 2002.

4. Marco A.F. Pimentel, David A. Clifton, Lei Clifton, Lionel Tarassenko, A review of novelty detection, Signal Processing 99, 215-249, 2014.

5. Ma, Junshui, and Simon Perkins, Online novelty detection on temporal sequences, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2003.

6. Kozma, R., M. Kitamura, M. Sakuma, and Y. Yokoyama, Anomaly Detection by Neural Network Models and Statistical Time Series Analysis, in Proceedings of IEEE International Conference on Neural Networks, Orlando, Florida, June 27-29, 1994.

7. Fabrizio Angiulli, Fabio Fassetti, and Luigi Palopoli, Detecting outlying properties of exceptional objects. ACM Transactions on Database Systems 34, 1, 1-62, 2009.

8. Samet Akcay, Amir Atapour-Abarghouei, and Toby P Breckon, GANomaly: Semi-supervised anomaly detection via adversarial training, In ACCV. Springer, 622 - 637, 2018.

9. Fabrizio Angiulli, Fabio Fassetti, Giuseppe Manco, and Luigi Palopoli, Outlying property detection with numerical attributes. Data Mining and Knowledge Discovery 31, 1, 134 - 163, 2017.

10. Guilherme O Campos, Arthur Zimek, Jorg Sander, Ricardo JGB Campello, Barbora Micenková, Erich Schubert, Ira Assent, and Michael E Houle, On the evaluation of unsupervised outlier detection: Measures, datasets, and an empirical study, Data Mining and Knowledge Discovery 30, 4 (2016), 891 - 927, 2017.

11. Azzedine Boukerche, Lining Zheng, and Omar Alfandi, Outlier Detection: Methods, Models and Classifications, Comput. Surveys, 2020.

12. Campbell, Colin, Kristin P. Bennett, A Linear Programming Approach to Novelty Detection, in Advances in Neural Information Processing Systems, vol 14, 2001.

13. Dan Xu, Elisa Ricci, Yan Yan, Jingkuan Song, and Nicu Sebe, Learning Deep Representations of Appearance and Motion for Anomalous Event Detection. In BMVC, 2015

14. Lukas Ruff, Robert A Vandermeulen, Nico Gornitz, Alexander Binder, Emmanuel Moller, Klaus-Robert Moller, and Marius Kloft, Deep semi-supervised anomaly detection, ICLR, 2020.

15. Radu Tudor Ionescu, Fahad Shahbaz Khan, Mariana-Iuliana Georgescu, and Ling Shao, Object-centric auto-encoders and dummy anomalies for abnormal event detection in video, In CVPR. 7842 - 7851, 2020.

16. Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel, Deep Learning for Anomaly Detection: A Review, ACM Comput. Surv. 54, 2, Article 38, 38 pages, 2022.

17. Nguyen, H.T. and Thai, N.H, Temporal and spatial outlier detection in wireless sensor networks. ETRI Journal, 41: 437-451, 2019.

18. Spinosa, Eduardo and de Carvalho, Andre and Gama, João., Novelty detection with application to data streams, Intell. Data Anal. 13. 405-422, 2009.

19. Ma, Junshui & Perkins, Simon, Online novelty detection on temporal sequences. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 613-618, 2003.

20. Dal Pozzolo, Andrea & Caelen, Olivier & Johnson, Reid & Bontempi, Gianluca, Calibrating Probability with Undersampling for Unbalanced Classification, IEEE Symposium Series on Computational Intelligence, 2015.


ThS. Nguyễn Văn Sơn, ThS. Nguyễn Văn Tân
Học viện Kỹ thuật Mật mã


https://tapchinganhang.gov.vn

Tin bài khác

Kinh nghiệm cho các chủ thể tham gia hoạt động thanh toán quốc tế bằng phương thức thư tín dụng

Kinh nghiệm cho các chủ thể tham gia hoạt động thanh toán quốc tế bằng phương thức thư tín dụng

Việt Nam là một trong những quốc gia chủ động hội nhập kinh tế khi tham gia sâu rộng vào nhiều hiệp định thương mại tự do. Theo đó, phương thức thư tín dụng (L/C) cũng được sử dụng ngày càng phổ biến trong các hoạt động thanh toán quốc tế. Tuy nhiên, bên cạnh những lợi ích đạt được, các doanh nghiệp trong nước cũng phải đối mặt với những chiêu trò lừa đảo chào bán, mua hàng, ký kết hợp đồng giao dịch thương mại quốc tế với nhiều thủ đoạn đa dạng, tinh vi, khó phát hiện, gây tổn thất nặng nề về tài chính. Do đó, cần thiết có những bài học kinh nghiệm từ hoạt động thanh toán quốc tế bằng phương thức L/C trong bối cảnh nền kinh tế toàn cầu đang đối mặt với hàng loạt vấn đề nan giải.
Các yếu tố ảnh hưởng đến sự hài lòng của sinh viên khi mua sắm trực tuyến: Nghiên cứu tại các trường đại học trên địa bàn thành phố Thủ Dầu Một

Các yếu tố ảnh hưởng đến sự hài lòng của sinh viên khi mua sắm trực tuyến: Nghiên cứu tại các trường đại học trên địa bàn thành phố Thủ Dầu Một

Sử dụng phương pháp định tính và định lượng, nghiên cứu này điều tra các yếu tố ảnh hưởng đến sự hài lòng của sinh viên đại học khi tham gia mua sắm trực tuyến tại thành phố Thủ Dầu Một. Qua các bước kiểm định, nghiên cứu xác định những biến tác động đến sự hài lòng của sinh viên tại các trường đại học trên địa bàn thành phố Thủ Dầu Một khi tham gia mua sắm trực tuyến bao gồm: Tính tiện ích của nền tảng trực tuyến, chất lượng thông tin sản phẩm, chất lượng sản phẩm.
Dân trí tài chính số tại Việt Nam: Thực trạng và giải pháp

Dân trí tài chính số tại Việt Nam: Thực trạng và giải pháp

Bài viết nghiên cứu thực trạng dân trí tài chính số tại Việt Nam trong bối cảnh các sản phẩm tài chính số phát triển mạnh, nhưng hiểu biết của người dân còn hạn chế, tiềm ẩn nhiều rủi ro. Trên cơ sở đó, bài viết đề xuất các giải pháp nâng cao kiến thức tài chính số cho nhóm dễ tổn thương và mở rộng khả năng tiếp cận dịch vụ an toàn, góp phần bảo vệ người tiêu dùng và thúc đẩy hệ sinh thái tài chính số bền vững.
Kiểm soát hành vi “tẩy xanh” hướng tới tăng trưởng bền vững - Góc nhìn từ khía cạnh pháp lý

Kiểm soát hành vi “tẩy xanh” hướng tới tăng trưởng bền vững - Góc nhìn từ khía cạnh pháp lý

Ô nhiễm môi trường đang là vấn đề cấp bách toàn cầu, đặc biệt trong bối cảnh chuyển đổi số mạnh mẽ hiện nay, đòi hỏi sự chung tay hành động từ cả quốc gia và từng cá nhân. Tuy nhiên, nhiều doanh nghiệp và tổ chức tài chính vẫn đặt lợi nhuận lên trên trách nhiệm xã hội, thể hiện qua hành vi “tẩy xanh”. Việc nhận diện và kiểm soát hành vi này là cần thiết nhằm nâng cao hiệu quả hoạt động và thúc đẩy chuyển đổi sang nền kinh tế xanh, hướng tới phát triển bền vững.
Sự tham gia của Thừa phát lại vào hoạt động xử lý nợ xấu của tổ chức tín dụng: Thực trạng pháp luật và kiến nghị

Sự tham gia của Thừa phát lại vào hoạt động xử lý nợ xấu của tổ chức tín dụng: Thực trạng pháp luật và kiến nghị

Nợ xấu là thách thức lớn đối với sự ổn định tài chính, trong khi việc xử lý qua cơ quan thi hành án còn gặp nhiều khó khăn. Thừa phát lại được xem là giải pháp thay thế hỗ trợ các tổ chức tín dụng thu hồi nợ hiệu quả hơn, nhưng khung pháp lý hiện hành chưa tạo điều kiện phát huy vai trò này. Bài viết phân tích các quy định pháp luật liên quan, chỉ ra bất cập và tác động đến việc xử lý nợ xấu. Từ đó, nghiên cứu đề xuất giải pháp hoàn thiện pháp lý, tham khảo kinh nghiệm của Pháp.
Những điểm dễ tổn thương của hệ thống tài chính trong kỷ nguyên biến động mạnh địa chính trị và kinh tế - Một số khuyến nghị chính sách

Những điểm dễ tổn thương của hệ thống tài chính trong kỷ nguyên biến động mạnh địa chính trị và kinh tế - Một số khuyến nghị chính sách

Bài viết phân tích những thách thức lớn đối với ổn định của hệ thống tài chính quốc tế trong bối cảnh bất ổn toàn cầu gia tăng, bao gồm bất định kinh tế vĩ mô, định giá tài sản cao, đòn bẩy tài chính và sự phát triển nhanh của khu vực phi ngân hàng. Các rủi ro mang tính hệ thống có thể làm khuếch đại cú sốc thị trường và lan truyền toàn cầu. Từ đó, bài viết đề xuất các khuyến nghị chính sách như tăng cường quản trị rủi ro, kiểm soát đòn bẩy, mở rộng giám sát và thúc đẩy hợp tác quốc tế nhằm nâng cao khả năng chống chịu của hệ thống tài chính.
Tác động của rủi ro địa chính trị đến hoạt động đầu tư của các doanh nghiệp Việt Nam

Tác động của rủi ro địa chính trị đến hoạt động đầu tư của các doanh nghiệp Việt Nam

Nghiên cứu này tập trung phân tích tác động của rủi ro địa chính trị đến hoạt động đầu tư của doanh nghiệp tại Việt Nam. Thông qua tổng hợp các nghiên cứu trong và ngoài nước kết hợp với mô hình định lượng, nghiên cứu sẽ làm rõ tác động của rủi ro địa chính trị ảnh hưởng đến quyết định đầu tư, cung cấp bằng chứng thực nghiệm giúp doanh nghiệp và nhà hoạch định chính sách có cái nhìn toàn diện hơn về vấn đề này.
Khai thác hình ảnh vệ tinh để nghiên cứu ảnh hưởng về bất bình đẳng kinh tế địa phương đến ESG của doanh nghiệp Việt Nam

Khai thác hình ảnh vệ tinh để nghiên cứu ảnh hưởng về bất bình đẳng kinh tế địa phương đến ESG của doanh nghiệp Việt Nam

Nghiên cứu phân tích mối liên hệ giữa bất bình đẳng kinh tế giữa các địa phương và hoạt động kinh doanh bền vững của doanh nghiệp tại Việt Nam dựa trên tiêu chí ESG. Dữ liệu được thu thập từ hình ảnh vệ tinh và thông tin của hơn 1.000 doanh nghiệp trên cả nước. Kết quả giúp đánh giá tác động của các yếu tố kinh tế - xã hội đến hoạt động bền vững và đưa ra khuyến nghị chính sách phù hợp.
Xem thêm
Pháp luật về bảo vệ dữ liệu cá nhân trong lĩnh vực ngân hàng tại một số quốc gia  và bài học kinh nghiệm cho Việt Nam

Pháp luật về bảo vệ dữ liệu cá nhân trong lĩnh vực ngân hàng tại một số quốc gia và bài học kinh nghiệm cho Việt Nam

Trong xu hướng phát triển nền kinh tế số, các giao dịch thường xuyên được thực hiện qua phương thức trực tuyến từ dịch vụ công đến các dịch vụ tài chính, cũng từ đó, rủi ro về bảo mật thông tin ngày càng trở nên nghiêm trọng, đặc biệt đối với các quốc gia đang phát triển. Các thông tin dữ liệu nói chung và thông tin dữ liệu cá nhân nói riêng là những vấn đề quan trọng trong các quan hệ xã hội và cần được bảo vệ như những quyền lợi chính đáng của con người.
Điều hành tín dụng linh hoạt là nền tảng cho thị trường bất động sản phát triển bền vững

Điều hành tín dụng linh hoạt là nền tảng cho thị trường bất động sản phát triển bền vững

Trong năm 2025, Ngân hàng Nhà nước Việt Nam (NHNN) tiếp tục nâng cao năng lực giám sát và quản lý rủi ro tín dụng trong lĩnh vực bất động sản, thông qua việc xây dựng hệ thống cảnh báo sớm và bộ tiêu chí phân loại tín dụng đặc thù cho doanh nghiệp bất động sản. Tín dụng bất động sản cũng được định hướng ưu tiên cho các phân khúc phục vụ an sinh xã hội như nhà ở xã hội, nhà ở công nhân và các dự án thương mại đáp ứng nhu cầu ở thực sự của người dân.
Chương trình 145 nghìn tỉ đồng cho vay nhà ở xã hội: Doanh số giải ngân dần cải thiện

Chương trình 145 nghìn tỉ đồng cho vay nhà ở xã hội: Doanh số giải ngân dần cải thiện

Mặc dù có nhiều khó khăn nhưng với sự chỉ đạo sát sao của Chính phủ, Thủ tướng Chính phủ và nỗ lực của ngành Ngân hàng, doanh số giải ngân chương trình cho vay lãi suất ưu đãi đối với chủ đầu tư, người mua nhà các dự án nhà ở xã hội, nhà ở công nhân, dự án cải tạo, xây dựng lại chung cư cũ (chương trình 145 nghìn tỉ đồng) đã có sự cải thiện qua thời gian, tháng sau cao hơn tháng trước, tương ứng với nguồn cung nhà ở xã hội gia tăng.
Thủ tướng chỉ đạo tiếp tục đẩy mạnh cao điểm đấu tranh ngăn chặn, đẩy lùi buôn lậu, gian lận thương mại

Thủ tướng chỉ đạo tiếp tục đẩy mạnh cao điểm đấu tranh ngăn chặn, đẩy lùi buôn lậu, gian lận thương mại

Thủ tướng Chính phủ Phạm Minh Chính vừa ký Công điện 82/CĐ-TTg ngày 4/6/2025 về tiếp tục đẩy mạnh cao điểm đấu tranh ngăn chặn, đẩy lùi tình trạng buôn lậu, gian lận thương mại, hàng giả, xâm phạm quyền sở hữu trí tuệ.
Tổng Bí thư Tô Lâm làm việc với Ban Chính sách, chiến lược Trung ương về cơ chế, chính sách quản lý hiệu quả thị trường vàng

Tổng Bí thư Tô Lâm làm việc với Ban Chính sách, chiến lược Trung ương về cơ chế, chính sách quản lý hiệu quả thị trường vàng

Chiều 28/5, đồng chí Tô Lâm, Tổng Bí thư Ban Chấp hành Trung ương Đảng Cộng sản Việt Nam đã có buổi làm việc với Ban Chính sách, chiến lược Trung ương về cơ chế, chính sách quản lý hiệu quả thị trường vàng trong thời gian tới.
Vị thế của đô la Mỹ trên thị trường tài chính toàn cầu

Vị thế của đô la Mỹ trên thị trường tài chính toàn cầu

Tháng 4/2025 chứng kiến cuộc khủng hoảng niềm tin nghiêm trọng đối với đồng USD, bất chấp lợi suất trái phiếu Mỹ tăng. Bài viết phân tích những bất thường trên thị trường tài chính toàn cầu sau các biện pháp thuế quan gây tranh cãi của Mỹ, đồng thời chỉ ra nguyên nhân từ sự thay đổi cấu trúc tài chính, phi toàn cầu hóa và biến động địa chính trị. Nếu xu hướng này tiếp diễn, USD có nguy cơ mất dần vị thế, đe dọa sự ổn định của hệ thống tài chính thế giới.
Kinh nghiệm quốc tế về áp dụng Hiệp ước vốn Basel III  trong hoạt động ngân hàng và khuyến nghị cho Việt Nam

Kinh nghiệm quốc tế về áp dụng Hiệp ước vốn Basel III trong hoạt động ngân hàng và khuyến nghị cho Việt Nam

Hiệp ước vốn Basel III là khuôn khổ nâng cao với sự sửa đổi và củng cố cả ba trụ cột của Basel II, đây là công cụ hỗ trợ đắc lực để nâng cao chất lượng quản trị rủi ro và năng lực cạnh tranh của các ngân hàng. Bài viết phân tích tình hình áp dụng các Hiệp ước vốn Basel của hệ thống ngân hàng trên thế giới, cùng với kinh nghiệm quốc tế và thực tiễn tại Việt Nam trong việc áp dụng Hiệp ước vốn Basel III, tác giả đưa ra một số đề xuất giải pháp chính sách cho hệ thống ngân hàng...
Hiểu biết tài chính và truyền tải chính sách tiền tệ: Kinh nghiệm từ Ngân hàng Trung ương châu Âu và một số khuyến nghị

Hiểu biết tài chính và truyền tải chính sách tiền tệ: Kinh nghiệm từ Ngân hàng Trung ương châu Âu và một số khuyến nghị

Bài viết phân tích vai trò của hiểu biết tài chính trong việc truyền dẫn chính sách tiền tệ, dựa trên khảo sát của Ngân hàng Trung ương châu Âu; đồng thời, đề xuất tăng cường giáo dục và truyền thông tài chính để hỗ trợ chính sách tiền tệ và phát triển kinh tế bền vững.
Giải mã bẫy thu nhập trung bình: Kinh nghiệm Đông Á và một số khuyến nghị chính sách

Giải mã bẫy thu nhập trung bình: Kinh nghiệm Đông Á và một số khuyến nghị chính sách

Bài viết này tổng hợp bài học từ các nền kinh tế đã thành công vượt qua "bẫy thu nhập trung bình" như Hàn Quốc, Singapore, Đài Loan (Trung Quốc), Malaysia và Trung Quốc. Trên cơ sở đó, tác giả nêu một số khuyến nghị chính sách đối với Việt Nam nhằm duy trì đà tăng trưởng, tránh rơi vào “bẫy” và hướng tới mục tiêu thu nhập cao vào năm 2045.
Kinh tế vĩ mô thế giới và trong nước các tháng đầu năm 2025: Rủi ro, thách thức và một số đề xuất, kiến nghị

Kinh tế vĩ mô thế giới và trong nước các tháng đầu năm 2025: Rủi ro, thách thức và một số đề xuất, kiến nghị

Việt Nam đã đặt mục tiêu tăng trưởng GDP năm 2025 đạt 8% trở lên, nhằm tạo nền tảng vững chắc cho giai đoạn tăng trưởng hai con số từ năm 2026. Đây là một mục tiêu đầy thách thức, khó khăn, đặc biệt trong bối cảnh kinh tế toàn cầu còn nhiều bất định và tăng trưởng khu vực đang có xu hướng chậm lại, cùng với việc Hoa Kỳ thực hiện áp thuế đối ứng với các đối tác thương mại, trong đó có Việt Nam. Mặc dù vậy, mục tiêu tăng trưởng kinh tế trên 8% năm 2025 vẫn có thể đạt được, với điều kiện phải có sự điều hành chính sách linh hoạt, đồng bộ và cải cách thể chế đủ mạnh để khơi thông các điểm nghẽn về đầu tư, năng suất và thị trường…

Thông tư số 07/2025/TT-NHNN Sửa đổi, bổ sung một số điều của Thông tư số 39/2024/TT-NHNN ngày 01 tháng 7 năm 2024 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về kiểm soát đặc biệt đối với tổ chức tín dụng

Nghị định số 94/2025/NĐ-CP ngày 29 tháng 4 năm 2025 của Chính phủ quy định về Cơ chế thử nghiệm có kiểm soát trong lĩnh vực ngân hàng

Nghị định số 26/2025/NĐ-CP của Chính phủ ngày 24/02/2025 quy định chức năng, nhiệm vụ, quyền hạn và cơ cấu tổ chức của Ngân hàng Nhà nước Việt Nam

Thông tư số 59/2024/TT-NHNN ngày 31/12/2024 Sửa đổi, bổ sung một số điều của Thông tư số 12/2021/TT-NHNN ngày 30 tháng 7 của 2021 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về việc tổ chức tín dụng, chi nhánh ngân hàng nước ngoài mua, bán kỳ phiếu, tín phiếu, chứng chỉ tiền gửi, trái phiếu do tổ chức tín dụng, chi nhánh ngân hàng nước ngoài khác phát hành trong nước

Thông tư số 60/2024/TT-NHNN ngày 31/12/2024 Quy định về dịch vụ ngân quỹ cho tổ chức tín dụng, chi nhánh ngân hàng nước ngoài

Thông tư số 61/2024/TT-NHNN ngày 31/12/2024 Quy định về bảo lãnh ngân hàng

Thông tư số 62/2024/TT-NHNN ngày 31/12/2024 Quy định điều kiện, hồ sơ, thủ tục chấp thuận việc tổ chức lại ngân hàng thương mại, tổ chức tín dụng phi ngân hàng

Thông tư số 63/2024/TT-NHNN ngày 31/12/2024 Quy định về hồ sơ, thủ tục thu hồi Giấy phép và thanh lý tài sản của tổ chức tín dụng, chi nhánh ngân hàng nước ngoài; hồ sơ, thủ tục thu hồi Giấy phép văn phòng đại diện tại Việt Nam của tổ chức tín dụng nước ngoài, tổ chức nước ngoài khác có hoạt động ngân hàng

Thông tư số 64/2024/TT-NHNN ngày 31/12/2024 Quy định về triển khai giao diện lập trình ứng dụng mở trong ngành Ngân hàng

Thông tư số 57/2024/TT-NHNN ngày 24/12/2024 Quy định hồ sơ, thủ tục cấp Giấy phép lần đầu của tổ chức tín dụng phi ngân hàng