Dự báo khách hàng ngân hàng rời bỏ dịch vụ với thuật toán học máy - Hồi quy Logistic

Bài viết khoa học chuyên sâu
Học máy (Machine Learning) đóng một vai trò quan trọng trong quá trình chuyển đổi số, đặc biệt là trong lĩnh vực tài chính, ngân hàng. Học máy không những là công cụ hỗ trợ ra quyết định trong việc xét duyệt tín dụng cho khách hàng, mà còn giúp các ngân hàng nhận định đúng đâu là khách hàng tiềm năng trong chiến lược kinh doanh của họ.
aa

Tóm tắt: Học máy (Machine Learning) đóng một vai trò quan trọng trong quá trình chuyển đổi số, đặc biệt là trong lĩnh vực tài chính, ngân hàng. Học máy không những là công cụ hỗ trợ ra quyết định trong việc xét duyệt tín dụng cho khách hàng, mà còn giúp các ngân hàng nhận định đúng đâu là khách hàng tiềm năng trong chiến lược kinh doanh của họ. Các bài toán ứng dụng học máy được đẩy mạnh nghiên cứu và ứng dụng trong những năm gần đây nhằm giúp các ngân hàng tối ưu hóa việc sử dụng nguồn vốn và nâng cao lợi nhuận. Trong bài viết này, chúng tôi giới thiệu một ứng dụng của học máy cho bài toán dự đoán khách hàng rời bỏ dịch vụ ngân hàng tại các ngân hàng thương mại (NHTM). Kết quả thực nghiệm cho thấy, tính khả quan của đầu tư đẩy mạnh nghiên cứu và ứng dụng các thuật toán học máy trong lĩnh vực ngân hàng để rút ngắn thời gian làm việc, tiết kiệm thời gian cho các chuyên gia Việt Nam.

Từ khóa: Trí tuệ nhân tạo, học máy, khai thác dữ liệu, dự đoán rời bỏ.

PREDICTION OF CUSTOMER CHURN IN BANKING SECTOR USING MACHINE LEARNING - LOGISTIC REGRESSION ALGORITHM

Abstract: Machine Learning (ML) plays an important role in digital transformation, specially in banking and finance sector. It is not only a decision support tool in credit approval for customers but also helps banks to correctly identify potential customers in their business strategy. Applications of machine learning problems have been researched and applied in recent years to help banks optimize their capital and increase their profits. In this paper, we introduce an application of machine learning to predict customer churn at commercial banks. The experimental results show the positive effects of investing in promoting research and application of machine learning algorithms in the banking sector to shorten working time and save time for Vietnamese experts.


Keywords: Artificial intelligence, machine learning, data mining, churn prediction.

1. Giới thiệu

Học máy là một lĩnh vực được các doanh nghiệp và các tổ chức nghiên cứu, ứng dụng, đặc biệt là trong lĩnh vực tài chính, ngân hàng. Từ các trợ lí ảo như Siri và Cortana, đến các Chatbots được tạo ra bởi Facebook, Google và nhiều công ty công nghệ khác (Breeden, 2021; Leo, M., Sharma, S., và Maddulety, K., 2019). Trí tuệ nhân tạo (Artificial Intelligence) đang ngày càng tác động mạnh mẽ đến các lĩnh vực kinh tế, xã hội, trong đó có lĩnh vực ngân hàng. Nó góp phần làm thay đổi chiến lược kinh doanh, sản xuất tại các doanh nghiệp trong điều kiện nền kinh tế hội nhập hiện nay và trong tương lai. Bài viết này trình bày tổng quan về học máy và ứng dụng của học máy trong lĩnh vực tài chính, ngân hàng, sau đó là minh họa việc sử dụng công cụ học máy hỗ trợ cho việc ra quyết định tại NHTM (P Salman Raju, V Rama Bai và Gkrishna Chaitanya, 2014) bằng việc ứng dụng mô hình hồi quy Logistic để dự báo khách hàng rời bỏ dịch vụ tại ngân hàng.

Theo Microsoft, Google hay một số công ty công nghệ lớn, chuyển đổi số là một sự đổi mới kinh doanh được thúc đẩy bởi sự bùng nổ của điện toán đám mây, trí tuệ nhân tạo và Internet kết nối vạn vật (IoT), cung cấp những cách thức mới để hiểu, quản lí và chuyển đổi cho các hoạt động kinh doanh của họ.

Duy trì khách hàng là một vấn đề ngày càng cấp bách trong môi trường thương mại cạnh tranh. Nghiên cứu được thực hiện ở các cấp độ quốc tế và quốc gia cho thấy tầm quan trọng của những vấn đề trọng tâm đối với NHTM để tồn tại và phát triển (Malali, A. B., và Gopalakrishnan, 2020; P Salman Raju, V. Rama Bai và Gkrishna Chaitanya, 2014; Petre, 2013) đó là: (i) Chăm sóc, duy trì khách hàng; (ii) Quan tâm, tập trung vào công nghệ; (iii) Quan tâm tới những phân khúc thị trường đặc biệt; (iv) Tăng cường hoạt động và hiệu quả kinh doanh.

Trong bốn nhân tố trên, chăm sóc và duy trì khách hàng là nhân tố được quan tâm trước tiên và có sự ảnh hưởng lớn nhất tới sự tăng trưởng và phát triển của các NHTM. Công cụ quản lí quan hệ khách hàng (Customer Relationship Management - CRM) đã được phát triển và áp dụng để nâng cao khả năng thu hút, duy trì khách hàng và hỗ trợ các phân tích quan trọng. Thông thường các ứng dụng CRM giữ một tập hợp lớn các thông tin về từng khách hàng cá nhân. Các thông tin này được thu thập từ hoạt động của một khách hàng tại ngân hàng nào đó. Dữ liệu được ghi bằng cách sử dụng một mô hình phân tích thống kê, được xác định bởi các thuộc tính khác nhau đặc trưng cho các khách hàng. Những thuộc tính này còn được gọi là các biến dự báo. Liên quan đến vấn đề này, bài viết sẽ đưa ra giải pháp cho việc dự báo sự trung thành (Jain, H., Khunteta, A., và Srivastava, S. , 2020) sử dụng phương pháp cây hồi quy Logistic.

Bài viết được trình bày gồm ba phần: Trước tiên là tổng quan về ứng dụng trí tuệ nhân tạo và học máy trong lĩnh vực ngân hàng, tiếp sau là giới thiệu một ứng dụng của học máy (thuật toán hồi qui Logistic) và cuối cùng là phần thực nghiệm với công cụ học máy đã được giới thiệu.

2. Tổng quát về học máy và hồi quy Logistic

2.1. Sơ lược về học máy và ứng dụng của học máy trong ngân hàng

Học máy là một lĩnh vực của trí tuệ nhân tạo liên quan đến việc nghiên cứu và xây dựng kĩ thuật cho phép các hệ thống học tự động từ dữ liệu để giải quyết những vấn đề cụ thể. Chúng ta có thể sử dụng học máy để chuyển đổi thông tin thành tri thức phục vụ cho nhiều lĩnh lực trong cuộc sống, đặc biệt trong quá trình tìm kiếm thông tin từ những nguồn dữ liệu khổng lồ để áp dụng vào sản xuất và cuộc sống (Petre, 2013). Các kĩ thuật học máy giúp chúng ta tìm ra các mẫu thông tin hay tri thức trong dữ liệu được sử dụng để hỗ trợ ra quyết định hay dự đoán các sự kiện có thể xảy ra trong tương lai. Ví dụ như để tìm kiếm các mẫu trong dữ liệu để hỗ trợ ra quyết định dựa trên các dữ liệu mà chúng ta cung cấp. Học máy có mục đích chính là huấn luyện cho các máy tính tự động “học” mà không cần sự can thiệp hay trợ giúp của con người để thực hiện, điều chỉnh các hành động. (Dr.Chitra và B.Subahini, 2013).

Ngày nay, việc phát triển và ứng dụng học máy đang được áp dụng rộng rãi ở hầu hết mọi lĩnh vực trong cuộc sống như: Khai phá dữ liệu, chẩn đoán bệnh trong y học, phát hiện và nhận biết tín dụng giả, phân tích và dự báo xu hướng thị trường chứng khoán, nhận dạng tiếng nói và chữ viết, dịch tự động, trò chơi và điều hướng robot. Tất cả những ứng dụng trên có một điểm chung là sử dụng “bộ não logic” được cấu thành từ các thuật toán học máy bằng cách tiếp nhận dữ liệu đầu vào đã được số hóa và thực hiện xử lí, phân tích qua nhiều lớp, với mức độ phức tạp và mức độ “thông minh” ngày càng tăng (Leo, M., Sharma, S., và Maddulety, K., 2019).

Trên thế giới, đã có rất nhiều tập đoàn, công ty lớn đã và đang áp dụng học máy trong cách vận hành các hệ thống trí tuệ nhân tạo như Facebook, Amazon, Google. Tất cả đều đạt được những đột phá, phát triển thần kì chỉ trong vòng dưới 10 năm trở lại đây. Một số ứng dụng về học máy cho lĩnh vực tài chính, ngân hàng:

Ngăn chặn rủi ro: Đối với lĩnh vực tài chính, ngân hàng, mô hình rủi ro được cho là yếu tố hàng đầu của các công ty, doanh nghiệp đang hoạt động trong lĩnh vực ngân hàng. Vì nó giúp các tổ chức, doanh nghiệp dễ dàng hơn trong việc xây dựng và triển khai các chiến lược để có thể đánh giá thực trạng về hiệu quả và năng suất lao động. Với sự hỗ trợ đắc lực của Data Science và Big Data trong mô hình rủi ro, ngân hàng và doanh nghiệp có thể áp dụng để phân tích, lọc ra những khách hàng không có đủ khả năng chi trả khoản vay trước khả năng rủi ro nhất có thể xảy ra (Leo, M., Sharma, S., và Maddulety, K., 2019). Mô hình rủi ro tín dụng giúp cho ngân hàng có thể phân tích các khoản vay sẽ được hoàn trả như thế nào, một trong những yếu tố quan trọng và nổi bật mà mọi doanh nghiệp đều quan tâm. Ngoài ra, những công cụ phân tích trong mô hình rủi ro hỗ trợ việc định lượng hiệu suất cũng như hiệu quả trong quá trình vận hành của doanh nghiệp.

Phòng chống gian lận: Với sự phát triển của Internet, việc thực hiện các giao dịch thông qua các phương tiện, các dịch vụ thương mại điện tử đôi khi tạo ra những con số mơ hồ, khó kiểm soát. Nhờ sự phát triển của học máy đã giúp cho các công ty tìm kiếm, phát hiện ra những giao dịch bất thường hay những giao dịch có dấu hiệu gian lận. Hệ thống phòng chống gian lận giúp định vị, phân tích các hoạt động của người dùng, kiểm tra toàn bộ quá trình để tìm ra những mô hình giao dịch có kẽ hở và độc hại (M. Madhavi, M. V. R. Srivatsava, 2017; Dr.Chitra và B.Subahini, 2013). Việc ứng dụng khoa học dữ liệu, khai thác hiệu quả sức mạnh của học máy trong việc phân tích để dự đoán bằng cách tạo ra các công cụ phân nhóm các cụm dữ liệu đã xác định để có thể nhận ra và nắm bắt xu hướng, mô hình độc hại trong hệ thống phát hiện gian lận.

Quản lí giá trị vòng đời khách hàng: Cũng như những ngành khác, ngành tài chính, ngân hàng cũng cần phải tiến hành dự đoán và xác định giá trị vòng đời khách hàng. Do đó, việc đánh giá những khách hàng nào sẽ ở lại sau một quá trình giao dịch và liệu họ đóng góp như thế nào vào doanh thu tương lai của công ty là những vấn đề mà doanh nghiệp cần phải quan tâm. Nhờ có khoa học dữ liệu, ngân hàng có thể tiến hành sàng lọc và phân loại những nhóm khách hàng tiềm năng cũng như những giá trị thiết thực trong tương lai thông qua việc phân tích và dự đoán. Những công cụ có thể hỗ trợ ngân hàng như CART (Classification và Regression Trees) hay GLM (Generalized Linear Models) có vai trò quan trọng trong việc chọn lọc, phân loại hay dự đoán xu thế, từ đó, giúp xác định đúng khách hàng cũng như đóng góp vào sự tăng trưởng và lợi nhuận của ngân hàng (Jain, H., Khunteta, A., và Srivastava, S., 2020).

Phân khúc thị trường: Phân khúc thị trường là công cụ chỉ ra những nhóm khách hàng có cùng những tính cách nhất định và các hành vi thông thường. Học máy chính là công cụ hỗ trợ tốt nhất để định vị cũng như khoanh vùng chính xác từng nhóm khách hàng. Lợi ích của việc phân cụm khách hàng: Xác định khách hàng dựa trên lợi nhuận của họ; phân khúc khách hàng dựa vào lịch sử sử dụng dịch vụ; phát triển mối quan hệ và gắn kết hơn với khách hàng; khuyến nghị, đưa ra những dịch vụ phù hợp với từng nhóm khách hàng; phân tích phân khúc khách hàng giúp thực hiện và cải thiện dịch vụ.

2.2. Thuật toán Logistic Regression

Ý tưởng của thuật toán Logistic Regression như sau:

Đầu ra của thuật toán Logistic Regression với điểm dữ liệu Trong đó x là điểm dữ liệu, w là bộ trọng số của mô hình, hàm sigmoid được chọn làm hàm kích hoạt vì có đầu ra bị chặn trong khoảng 0, 1) có thể dùng để xấp xỉ xác suất phân lớp và có đạo hàm đơn giản thuận lợi cho việc học bằng thuật toán Gradient Descent.


Giả sử xác suất để một điểm dữ liệu x rơi vào lớp thứ nhất là f (wTx) và rơi vào lớp còn lại là 1 - f (wTx):

P (yi= 1|xi; w) = f (wTxi) (I)

P (yi= 0| xi; w) = 1 - f (wTxi) (II)

Chúng ta cần phải tìm các hệ số w sao cho với các điểm dữ liệu ứng với yi=1, f(wTxi) gần với 1 và ngược lại. Kí hiệu zi= f(wTxi) hai biểu thức (I) và (II) có thể được viết dưới dạng:

P (yi |xi; w) = ziyii(1-zi)1-yi

Biểu thức này giống với hai biểu thức ở trên vì khi y1=1, phần thứ hai của vế phải sẽ bằng 1, khi y1=0, phần thứ nhất sẽ bằng 1. Chúng ta muốn mô hình thể hiện ra kết quả gần với dữ liệu đã cho nhất, tức là xác suất có giá trị P sẽ đạt giá trị cao nhất. Lấy logarit tự nhiên, đổi dấu và lấy trung bình, ta thu được hàm số:



Thuật toán Gradient Descent được sử dụng để tối ưu hàm mất mát. Hàm mất mát đối với một điểm dữ liệu được tính như sau:



Khi đó, véc-tơ Gradient (trường véc-tơ có chiều hướng về phía mức độ tăng lớn nhất của trường vô hướng và có độ lớn là mức độ thay đổi lớn nhất) của hàm mất mát theo trọng số được tính theo công thức:


Thuật toán tối ưu Gradient Descent (tìm các điểm cực tiểu cục bộ này một cách xấp xỉ sau một số vòng lặp) cho Logistic Regression được thực hiện như sau:

với η là hệ số học (learning rate)

Trọng số w được khởi tạo ngẫu nhiên.

Quy tắc phân lớp đối với Logistic Regression: Với đầu ra của điểm dữ liệu là sẽ có nhãn là 1 nếu σ(wT x) ≥ 0,5 và có nhãn là 0 nếu ngược lại. Điều này tương đương với việc sẽ có nhãn là 1 nếu wT x ≥ 0. Như vậy, thực chất khi dùng thuật toán Logistic Regression để phân lớp, ta sẽ đi tìm một siêu phẳng làm biển để phân lớp các điểm dữ liệu. Do đó, Logistic Regression sẽ hiệu quả nếu dữ liệu gần với Linearly Separable (phân biệt tuyến tính).

2.3. Ưu điểm và nhược điểm của Logistic Regression

Ưu điểm:

- Đơn giản, dễ thực hiện, hiệu quả

- Không đòi hỏi quá nhiều tài nguyên tính toán

- Ứng dụng trên nhiều lĩnh vực: Lao động, sản xuất (khả năng hư hỏng các thiết bị...), kinh doanh (khả năng rời dịch vụ, phân khúc khách hàng...), y tế (khả năng mắc bệnh...), ngân hàng (rủi ro tín dụng...)...

Nhược điểm:

- Không giải quyết được các vấn đề phi tuyến tính.

- Phụ thuộc cao vào tính đúng đắn của dữ liệu.

- Chỉ dự đoán các kết quả phân loại.

3. Dự báo khách hàng ngân hàng rời bỏ dịch vụ với thuật toán Logistic Regression

Chúng ta thấy rằng, một lĩnh vực khác trong ứng dụng trí tuệ nhân tạo có thể được sử dụng trong ngành Ngân hàng với mục đích phát hiện gian lận. Với sự hỗ trợ của các thuật toán trí tuệ nhân tạo, các hành động gian lận ngày càng được phát hiện nhiều hơn. Có hai phương pháp tiếp cận phổ biến đã được phát triển bởi tổ chức tài chính để phát hiện các mô hình gian lận (Jain, H., Khunteta, A., và Srivastava, S., 2020).

- Phương pháp tiếp cận thứ nhất, NHTM cần phải sử dụng đến kho dữ liệu của bên thứ ba và sử dụng các kĩ thuật trí tuệ nhân tạo để xác định mô hình gian lận, sau đó, các ngân hàng có thể tham chiếu chéo các mẫu với cơ sở dữ liệu riêng của mình.

- Phương pháp thứ hai, gian lận được nhận dạng dựa trên các mẫu thông tin nội bộ riêng của mình mà không phải nhờ vào bên thứ ba. Tuy nhiên, trên thực tế, hầu hết các ngân hàng đang sử dụng kết hợp cả hai phương pháp tiếp cận trên.

Trong phần tiếp theo của bài viết, tác giả trình bày một phương pháp phát hiện khách hàng có ý định rời bỏ dịch vụ bằng việc sử dụng thuật toán học máy và dữ liệu lịch sử của các ngân hàng. Ý tưởng của phương pháp là sử dụng bộ dữ liệu mà các ngân hàng đang lưu trữ và các lớp thuật toán học máy để tạo ra những mô hình nhằm phát hiện đâu là khách hàng có khả năng rời bỏ dịch vụ và khách hàng trung thành trong số hàng triệu khách hàng đang giao dịch với ngân hàng.

Bài toán có thể phát biểu dưới dạng mô hình toán học ngắn gọn như sau: Gọi X là tập dữ liệu gồm k thuộc tính về n khách hàng, cần đánh giá xem họ có phải là đối tượng rời bỏ hay không. Gọi C là tập giá trị (gồm hai giá trị 0 và 1) để đánh dấu khách hàng có rời bỏ hay không (C ∈ {0, 1}). Ta gọi f: X -> C là hàm xác định khách hàng có rời bỏ hay không. Mục tiêu của bài toán là cần tính toán f(xi)∈{0,1}, ∈i=1,...n.

Dữ liệu để thực nghiệm cho thuật toán Logistic Regression trong bài viết này là bộ dữ liệu “Churn_Prediction_Modeling.csv” gồm các đối đối tượng khách hàng của ngân hàng được thu thập từ các ngân hàng và được các nhà khoa học cung cấp tại: “https://www.kaggle.com/datasets/aakash50897/churn-modellingcsv”. Các đối tượng khách hàng này gồm tám thuộc tính cơ bản có ảnh hưởng nhiều nhất tới việc dự báo. Các thuộc tính, sau khi tiền xử lí với các thư viện mã nguồn mở và ngôn ngữ lập trình Python và lưu dưới dạng file excel với tên: “Churn_Prediction_Modeling.csv”. Bộ dữ liệu này đã được các nhà nghiên cứu thực nghiệm với các thuật toán như ANN, Xgboost, Pyspark trong bối cảnh không phải ở Việt Nam. Trong phần thực nghiệm này, tác giả sử dụng lại bộ dữ liệu trên với thuật toán Logistic Regression với mong muốn có thể học hỏi, điều chỉnh để có thể áp dụng cho bối cảnh là khách hàng của các NHTM Việt Nam.

3.1. Tiền xử lí dữ liệu và chuẩn hóa dữ liệu

Trước khi thực hiện thuật toán, dữ liệu cần phải được làm sạch, chuyển đổi để phù hợp với thuật toán tương ứng. Ví dụ, ta cần chuyển các dữ liệu dạng kí tự thành các dữ liệu dạng số: Với “Gender”: chuyển “Female” thành “0” và “Male” thành “1”; đối với “Geography”: chuyển “France” thành “0”, “Spain” thành “2” và “Germany” thành “1”. Để thực hiện việc này ta có thể sử dụng công cụ trong thư viện “sklearn” được cài đặt trên Python như sau:

Đoạn chương trình chuyển dữ liệu kiểu chữ thành dữ liệu kiểu số


Kết quả dữ liệu sau khi chuyển được thể hiện ở Bảng 1.

Bảng 1: Kết quả dữ liệu sau khi chuyển


3.2. Mô hình Logistic Regression

Trong phần này, các bước thực hiện thuật toán nói chung, với thuật toán Logistic Regression nói riêng sẽ được minh họa theo từng bước:

Bước 1: Xác định và chuẩn bị các thư viện cần thiết.

Bước 2: Đọc dữ liệu vào bộ nhớ trong do Python quản lí.

Bước 3: Chia dữ liệu theo tỉ lệ bộ dữ liệu huấn luyện và bộ dữ liệu kiểm tra là 70% và 30%. Tập dữ liệu huấn luyện sẽ được sử dụng để huấn luyện bởi thuật toán. Sau khi chuẩn bị tốt bộ dữ liệu để huấn luyện mô hình, chúng ta sẽ đào tạo bộ dữ liệu bằng cách sử dụng bộ dữ liệu huấn luyện. Để cung cấp đào tạo hoặc sử dụng mô hình vào bộ huấn luyện, chúng ta sẽ cài đặt lớp Logistic Regression của thư viện “sklearn”.

Bước 4: Dự đoán kiểm tra kết quả: Sẽ tạo ra một biến mới có tên là ‘predicted’ và tiến hành kiểm tra: Nếu yes_Prob > 0,5 thì sẽ nhận giá trị là 1 và ngược lại sẽ nhận giá trị là 0.


Huấn luyện bằng thuật toán Logistic Regression

Bước 5: Đánh giá độ chính xác của thuật toán. Tại bước này một ma trận có tên “Confusion matrix” sẽ được tạo ra nhằm đánh giá hiệu quả hoạt động của thuật toán. (Hình 1)

Hình 1: Confusion matrix


Ma trận trên cho ta thấy:

- Có 2.340 khách hàng thực tế là khách hàng trung thành và dự đoán là đúng vậy.

- Có 73 khách hàng thực tế là khách hàng trung thành nhưng được dự đoán là rời đi.

- Có 505 khách hàng thực tế họ rời đi nhưng được dự đoán là khách hàng trung thành.

- Có 82 khách hàng rời bỏ dịch vụ ngân hàng và được dự đoán là sẽ rời bỏ dịch vụ ngân hàng.

Hình 2: Kết quả đánh giá


Từ kết quả đánh giá trên Hình 2 ta thấy:

- Precision=0,82 mô hình dự 82% khách hàng thực sự ở lại so với tất cả các trường hợp được dự đoán là ở lại.

- Recall=0,97 cho biết trong số những người thực tế ở lại thì có 97% khách hàng được dự đoán đúng.

Bước 6: Làm việc với biểu đồ ROC (Receiver operating characteristic)

Tại đây, một biểu đồ ROC được xây dựng nhằm đánh giá độ hiệu quả của thuật toán.

Hình 3: Biểu đồ ROC


Hình 3 là kết quả sau khi đoạn code vẽ biểu đồ được thực thi. Biểu đồ ROC là loại biểu đồ thể hiện sự thay đổi độ nhạy và độ đặc hiệu khi các giá trị ngưỡng thay đổi. Qua biểu đồ ROC mà hệ thống đã in ra phía trên, ta thấy được giá trị AUC (Area Under the Curve) trả về là 0,55. Dựa trên bảng so sánh ở phần đánh giá mô hình, chúng ta thấy được giá trị AUC = 0,55 thể hiện đây là mô hình dự báo chưa có nhiều có ý nghĩa.

Điều chỉnh mô hình: Vì đây là bài toán dự đoán khách hàng rời bỏ dịch vụ ngân hàng nên chúng ta sẽ điều chỉnh sao cho không có quá nhiều dự đoán là ở lại bị sai với thực tế. Bởi vì nếu có quá nhiều khách hàng thực tế là sẽ rời đi nhưng khi dự báo lại cho ra kết quả là ở lại sẽ dẫn đến hậu quả mất khách hàng.

Do đó, ta sẽ điều chỉnh sao cho hệ số False Negative (FN) là nhỏ nhất có thể. (Hình 4)

Hình 4: Confusion matrix


- Có 795 khách hàng thực tế là khách hàng trung thành và dự đoán là đúng như vậy.

- Có 1618 khách hàng thực tế là khách hàng trung thành nhưng được dự đoán là rời đi.

- Có 73 khách hàng thực tế là rời đi nhưng được dự đoán là khách hàng trung thành.

- Có 514 khách hàng rời bỏ dịch vụ ngân hàng và được dự đoán là sẽ rời bỏ dịch vụ ngân hàng.

Hình 5: Đánh giá mô hình


Từ kết quả Hình 5 ta thấy:


- Precision = 0,92 mô hình dự đoán 92% khách hàng thực sự ở lại so với tất cả các trường hợp được dự đoán là ở lại.

- Recall = 0,33 cho biết trong số những người thực tế ở lại thì có 33% khách hàng được dự đoán đúng.

Biểu đồ ROC thể hiện sự thay đổi độ nhạy và độ đặc hiệu khi các giá trị ngưỡng thay đổi. Qua biểu đồ ROC mà hệ thống đã in ra phía trên, ta có thể thấy giá trị AUC là 0,6. Dựa trên bảng so sánh ở phần đánh giá mô hình, chúng ta có thể thấy được đây là mô hình dự báo không tốt. (Hình 6)


Hình 6: Biểu đồ ROC sau khi điều chỉnh


Phần trên của bài viết đã trình bày quy trình sử dụng thuật toán khi tìm kiếm thông tin từ dữ liệu ngân hàng nhằm phân lớp khách hàng có nghi ngờ rời bỏ dịch vụ hay không. Để có kết quả mang tính ứng dụng phù hợp với thực tế bối cảnh Việt Nam, chúng ta cần phải thực hiện thuật toán này trên bộ dữ liệu thu thập được từ các NHTM Việt Nam. Đồng thời, cần tìm hiểu thêm tình hình thực tế để từ đó cải tiến chương trình, thay đổi các tham số để bài toán phù hợp với thực tế của Việt Nam.

4. Kết luận và đánh giá

Tác giả đã hệ thống hóa cơ sở lí thuyết về dữ liệu cũng như phân tích và nghiên cứu các vấn đề liên quan tới việc khai phá và tìm kiếm thông tin từ dữ liệu phục vụ cho việc ra quyết định của một số tổ chức kinh doanh, đặc biệt là các NHTM:

Thứ nhất, ứng dụng công nghệ học máy vào việc nhận định đâu là khách hàng trung thành, đâu là khách hàng có ý định rời bỏ dịch vụ của ngân hàng là một phương pháp hiện đại đã và đang được các NHTM áp dụng.

Thứ hai, có thể nói rằng, việc ứng dụng học máy vào hoạt động tín dụng làm giảm đáng kể rủi ro ngân hàng vì nó giúp ngân hàng nhận định đúng các đối tượng khách hàng của mình để có những giải pháp phù hợp trong chiến lược kinh doanh.

Thứ ba, ứng dụng công nghệ học máy cũng giúp cho thời gian thực hiện mỗi lần đánh giá tín dụng nói riêng và các công việc của ngân hàng nói chung trở nên nhanh hơn và đáng tin cậy hơn. Sở dĩ như vậy là bởi khả năng tính toán và đưa ra quyết định của con người là có hạn, trong khi đó học máy cũng có thể làm được điều tương tự với tốc độ nhanh hơn gấp nhiều lần. Không chỉ thời gian, các tiêu chí đánh giá khách hàng đã được mở rộng hơn, từ đó khiến cho các đánh giá mang tính khách quan hơn và có chiều sâu hơn. Ngoài ra, các phương thức trên cũng là một chỉ tiêu mới được đưa ra nhằm đa dạng hóa khả năng thanh toán cho khách hàng, cho thấy sự linh hoạt ứng biến tốt của ngân hàng.

Cuối cùng, như đã trình bày ở trên, khi chúng ta ứng dụng công nghệ học máy trong việc phát hiện khách hàng rời bỏ dịch vụ nói riêng và hoạt động tài chính của ngân hàng nói chung, thời gian xử lí của học máy ngắn và rất tiện lợi, điều đó đồng nghĩa với ngân hàng sẽ tiếp cận được với nhiều khách hàng hơn. Lượng khách hàng lớn hơn sẽ đem lại doanh thu cao hơn cho ngân hàng, đi đôi với đó là chi phí nhân sự và chi phí quản lí sẽ giảm xuống đáng kể. Khả năng thu thập thông tin của học máy rất nhanh và từ nhiều nguồn đáng tin cậy là một bước tiến lớn, khi mà các tổ chức tín dụng hiện giờ chưa áp dụng được hoặc mới áp dụng một phần vào việc đánh giá. Từ bước cải tiến này, sẽ là tiền đề cho các tổ chức tín dụng khác nghiên cứu và phát triển, đem lại cho khách hàng những trải nghiệm tốt nhất.

Tài liệu tham khảo:

1. Breeden. (2021). A survey of machine learning in credit risk. Journal of Credit Risk, 17(3).

2. Dr.Chitra và B.Subahini. (2013). Data Mining Techniques và its Applications in Banking Sector. International Journal of Emerging Technology và Advanced Engineering, Volume 3( Issue 38), pages 219-226.

3. Jain, H., Khunteta, A., và Srivastava, S., (2020). Churn prediction in telecommunication using logistic regression và logit boost. Procedia Computer Science,, 167, pages 101-112.

4. Leo, M., Sharma, S., và Maddulety, K. (2019). Machine learning in banking risk management: A literature review. page 29.

5. M Madhavi, M V R Srivatsava. (2017). Fraud Detection in Banking. International Journal of Engineering và Advanced Technology, 3, pages 322-358.

6. Malali, A. B., và Gopalakrishnan. (2020). Application of Artificial Intelligence và Its Powered Technologies in the Indian Banking và Financial Industry: An Overview. IOSR Journal Of Humanities Và Social Science,, 25(4), pages 55-60.

7. P Salman Raju, V Rama Bai và Gkrishna Chaitanya. (2014). Enhancing Customer Relationship Management in Banking và Retail Industries. International Journal of Innovative Research in Computer và Communication Engineering, 2(1), pages 2650-2657.

8. P Salman Raju, V. R. (2017). Credit scoring using machine learning techniques. International Journal of Computer Applications, 161(4).

9. Petre, R. (2013). Data Mining Solutions for the Business Environment. Database System Journal, 4, pages 21-29.


Nguyễn Dương Hùng

Khoa Hệ thống Thông tin quản lý - Học viện Ngân hàng

https://tapchinganhang.gov.vn

Tin bài khác

Phương thức hậu kiểm chi ngân sách qua Kho bạc Nhà nước theo mô hình hai cấp

Phương thức hậu kiểm chi ngân sách qua Kho bạc Nhà nước theo mô hình hai cấp

Nghiên cứu phân tích phương thức hậu kiểm trong kiểm soát chi ngân sách nhà nước qua hệ thống Kho bạc Nhà nước trong bối cảnh hiện đại hóa tài chính công theo Quyết định số 385/QĐ-BTC. Trên cơ sở thực tiễn và kinh nghiệm quốc tế, nghiên cứu khẳng định hậu kiểm là xu hướng tất yếu nhằm nâng cao hiệu quả kiểm soát chi, giảm thủ tục hành chính và thúc đẩy giải ngân. Tác giả đề xuất mô hình hậu kiểm gồm ba nội dung trọng tâm: Tổ chức bộ máy tách biệt chức năng thanh toán và kiểm soát, kiểm soát theo mức độ rủi ro và ứng dụng công nghệ, trí tuệ nhân tạo.
Các nhân tố ảnh hưởng đến hành vi sử dụng sản phẩm, dịch vụ ngân hàng xanh tại Việt Nam

Các nhân tố ảnh hưởng đến hành vi sử dụng sản phẩm, dịch vụ ngân hàng xanh tại Việt Nam

Mặc dù ngân hàng xanh đã phát triển ở nhiều quốc gia trên thế giới, việc thúc đẩy khách hàng tại Việt Nam sử dụng sản phẩm, dịch vụ ngân hàng xanh vẫn còn nhiều thách thức, người tiêu dùng Việt Nam có xu hướng thận trọng, chưa hoàn toàn quen thuộc với các sản phẩm tài chính - ngân hàng mang tính xanh và bền vững. Do đó, việc hiểu rõ các nhân tố ảnh hưởng đến hành vi sử dụng sản phẩm, dịch vụ ngân hàng xanh là rất cần thiết, nhằm xây dựng chiến lược marketing và phát triển sản phẩm phù hợp, qua đó góp phần thúc đẩy ngân hàng xanh phát triển bền vững tại Việt Nam.
Gắn kết ESG và hiệu quả tài chính trong ngành Ngân hàng Việt Nam: Bằng chứng thực nghiệm và hàm ý chính sách

Gắn kết ESG và hiệu quả tài chính trong ngành Ngân hàng Việt Nam: Bằng chứng thực nghiệm và hàm ý chính sách

Nghiên cứu này đã phân tích mối quan hệ giữa áp dụng ESG và hiệu quả tài chính trong ngành Ngân hàng Việt Nam trong giai đoạn 2017 - 2024. Kết quả cho thấy hiệu quả ESG tổng thể có mối liên hệ tích cực mạnh mẽ và ngày càng tăng cường với hiệu quả tài chính. Đặc biệt, nghiên cứu chỉ ra mối liên hệ giữa ESG và hiệu quả tài chính gia tăng đáng kể theo thời gian, với bước ngoặt rõ rệt trong giai đoạn 2022 - 2024. Những phát hiện này đóng góp quan trọng vào lĩnh vực nghiên cứu về ngân hàng bền vững tại các thị trường mới nổi Đông Nam Á và đưa ra những hàm ý thực tiễn có giá trị cho các bên liên quan trong ngành Ngân hàng Việt Nam. Khi Việt Nam tiếp tục hội nhập sâu rộng vào hệ thống tài chính toàn cầu và cam kết đạt Net Zero vào năm 2050, tầm quan trọng của các thực hành tài chính bền vững dự kiến sẽ ngày càng gia tăng mạnh mẽ.
Các nhân tố ảnh hưởng đến khả năng tiếp cận tài chính xanh của doanh nghiệp tại Việt Nam

Các nhân tố ảnh hưởng đến khả năng tiếp cận tài chính xanh của doanh nghiệp tại Việt Nam

Việc nghiên cứu, giải quyết các rào cản trong tiếp cận nguồn tài chính xanh của doanh nghiệp tại Việt Nam là rất quan trọng nhằm thúc đẩy phát triển bền vững và bảo vệ môi trường, cũng như giúp doanh nghiệp nâng tầm giá trị trên thị trường quốc tế. Những rào cản hiện tại không chỉ làm chậm tiến trình thực hiện các dự án xanh mà còn cản trở việc đạt được các mục tiêu phát triển bền vững của quốc gia. Bài viết phân tích các nhân tố ảnh hưởng đến việc tiếp cận tài chính xanh của các doanh nghiệp tại Việt Nam; từ đó, đề xuất một số khuyến nghị để hỗ trợ các doanh nghiệp tiếp cận dễ dàng hơn với nguồn tài chính xanh, bảo đảm sự đồng bộ, hiệu quả trong việc thực hiện các chính sách phát triển bền vững của Chính phủ.
Quản lý rủi ro thẻ tín dụng -  Kinh nghiệm từ các quốc gia trên thế giới và bài học cho Việt Nam

Quản lý rủi ro thẻ tín dụng - Kinh nghiệm từ các quốc gia trên thế giới và bài học cho Việt Nam

Thẻ tín dụng ngày càng phổ biến khiến các ngân hàng thương mại đối mặt với rủi ro nợ xấu và kiểm soát chi tiêu. Bài viết phân tích kinh nghiệm quốc tế để rút ra bài học giúp NHTM Việt Nam xây dựng chính sách tín dụng an toàn và ứng dụng công nghệ kiểm soát rủi ro hiệu quả.
Những yếu tố ảnh hưởng đến phát triển tín dụng xanh tại các ngân hàng thương mại trên địa bàn Thành phố Hồ Chí Minh

Những yếu tố ảnh hưởng đến phát triển tín dụng xanh tại các ngân hàng thương mại trên địa bàn Thành phố Hồ Chí Minh

Tín dụng xanh là một trong những trụ cột quan trọng của hệ thống tài chính xanh. Thời gian qua, Việt Nam cũng như các quốc gia trên thế giới đang thúc đẩy phát triển tín dụng xanh. Tuy được ghi nhận có sự tăng trưởng đều qua các năm nhưng số lượng lĩnh vực đầu tư xanh cũng như tỉ trọng còn hạn chế. Điều này xuất phát từ nguyên nhân chủ quan và khách quan, cần có nghiên cứu chuyên sâu về phát triển tín dụng xanh tại Việt Nam.
Nhóm nhân tố tác động đến chất lượng báo cáo tài chính của các doanh nghiệp xuất nhập khẩu niêm yết trên thị trường chứng khoán Việt Nam và một số đề xuất, khuyến nghị

Nhóm nhân tố tác động đến chất lượng báo cáo tài chính của các doanh nghiệp xuất nhập khẩu niêm yết trên thị trường chứng khoán Việt Nam và một số đề xuất, khuyến nghị

Mục đích của nghiên cứu là cung cấp cái nhìn toàn diện và sâu sắc về các nhân tố tác động đến chất lượng báo cáo tài chính của các doanh nghiệp xuất nhập khẩu niêm yết trên thị trường chứng khoán Việt Nam. Dữ liệu nghiên cứu được thu thập từ 78 doanh nghiệp trong giai đoạn 2019 - 2023. Sử dụng phương pháp phân tích hồi quy tuyến tính trên phần mềm Stata 17, kết quả cho thấy các yếu tố như kiểm soát nội bộ, khả năng sinh lời, vốn trí tuệ, đòn bẩy tài chính và chất lượng kiểm toán độc lập có ảnh hưởng đáng kể đến chất lượng báo cáo tài chính của các doanh nghiệp này, từ đó nhóm nghiên cứu đề xuất một số khuyến nghị cụ thể giúp các doanh nghiệp nâng cao tính minh bạch và hiệu quả trong quản lý thông tin tài chính, đồng thời, cung cấp góc nhìn hữu ích dành cho các nhà đầu tư, giúp họ có cơ sở để đưa ra các quyết định đầu tư phù hợp.
Ứng dụng mô hình hồi quy nhị phân trong việc dự đoán rủi ro phá sản của các doanh nghiệp trên thị trường chứng khoán

Ứng dụng mô hình hồi quy nhị phân trong việc dự đoán rủi ro phá sản của các doanh nghiệp trên thị trường chứng khoán

Phân tích báo cáo tài chính cung cấp thông tin rõ ràng về tình hình tài chính, vốn và công nợ của doanh nghiệp, giúp nhà quản trị đưa ra các quyết định điều hành và đầu tư chính xác. Nghiên cứu cho thấy có sự khác biệt rõ rệt giữa các chỉ số tài chính của nhóm doanh nghiệp có nguy cơ phá sản và nhóm doanh nghiệp không có nguy cơ phá sản. Các doanh nghiệp có nguy cơ phá sản thường có chỉ số tài chính không ổn định (quá cao hoặc quá thấp) so với các doanh nghiệp hoạt động bình thường.
Xem thêm
Phát biểu khai mạc của Tổng Bí thư Tô Lâm tại Hội nghị Trung ương 12 - khóa XIII

Phát biểu khai mạc của Tổng Bí thư Tô Lâm tại Hội nghị Trung ương 12 - khóa XIII

Sáng 18/7/2025, tại Hà Nội, Hội nghị lần thứ 12 Ban Chấp hành Trung ương Đảng khóa XIII (Hội nghị Trung ương 12) đã khai mạc trọng thể. Tổng Bí thư Tô Lâm chủ trì và phát biểu khai mạc Hội nghị. Tạp chí Ngân hàng trân trọng giới thiệu toàn văn bài phát biểu của Tổng Bí thư Tô Lâm.
Xử lý tài sản thế chấp là nhà ở hình thành trong tương lai tại các tổ chức tín dụng

Xử lý tài sản thế chấp là nhà ở hình thành trong tương lai tại các tổ chức tín dụng

Trong những năm gần đây, chế định pháp lý về thế chấp nhà ở hình thành trong tương lai để bảo đảm thực hiện nghĩa vụ tại các tổ chức tín dụng (TCTD) ngày càng được các cơ quan có thẩm quyền chú trọng xây dựng và hoàn thiện. Tuy nhiên, hiện nay, các quy định pháp luật hiện hành về vấn đề này vẫn chưa thực sự đầy đủ và còn những bất cập, gây khó khăn trong việc áp dụng, bởi đây là một loại tài sản mang tính chất đặc thù và tiềm ẩn nhiều rủi ro so với các loại tài sản hiện hữu. Vì vậy, cần có cơ chế rõ ràng, hướng dẫn cụ thể để bảo đảm thực hiện nghĩa vụ, giảm thiểu những rủi ro cho các TCTD trong việc nhận thế chấp loại hình tài sản này.
Cơ chế thử nghiệm có kiểm soát - Bước ngoặt chiến lược thúc đẩy Fintech và chuyển đổi số ngành Ngân hàng

Cơ chế thử nghiệm có kiểm soát - Bước ngoặt chiến lược thúc đẩy Fintech và chuyển đổi số ngành Ngân hàng

Ngày 29/4/2025, Chính phủ đã ban hành Nghị định số 94/2025/NĐ-CP về cơ chế thử nghiệm có kiểm soát trong lĩnh vực ngân hàng. Đây là Nghị định đầu tiên tại Việt Nam thiết lập khuôn khổ pháp lý cho việc thử nghiệm các sản phẩm, mô hình, dịch vụ tài chính mới ứng dụng công nghệ, đồng thời là bước tiến quan trọng trong quá trình thể chế hóa đổi mới sáng tạo tài chính tại Việt Nam. Không chỉ góp phần hiện thực hóa chiến lược tài chính toàn diện quốc gia và chuyển đổi số ngành Ngân hàng, Nghị định này còn tạo ra các tác động sâu rộng đối với cả hệ thống ngân hàng thương mại và nền kinh tế.
Góc độ pháp lý về rào cản của thủ tục thông báo tập trung kinh tế theo Luật Cạnh tranh đối với hoạt động của doanh nghiệp

Góc độ pháp lý về rào cản của thủ tục thông báo tập trung kinh tế theo Luật Cạnh tranh đối với hoạt động của doanh nghiệp

Thủ tục thông báo tập trung kinh tế theo Luật Cạnh tranh năm 2018, dù đóng vai trò quan trọng trong việc kiểm soát các hành vi hạn chế cạnh tranh nhưng lại đang tạo ra những rào cản đáng kể cho doanh nghiệp do thời gian thẩm định kéo dài, yêu cầu hồ sơ phức tạp, đòi hỏi nhiều tài liệu chuyên sâu như mô tả giao dịch và phân tích thị trường. Những yếu tố này không chỉ làm tăng chi phí tuân thủ, rủi ro pháp lý, nguy cơ rò rỉ thông tin, mà còn cản trở doanh nghiệp tận dụng cơ hội kinh doanh, đặc biệt trong bối cảnh cạnh tranh toàn cầu ngày càng gia tăng.
Kinh nghiệm thế giới về sử dụng tín chỉ các-bon làm tài sản bảo đảm ngân hàng  và khuyến nghị đối với Việt Nam

Kinh nghiệm thế giới về sử dụng tín chỉ các-bon làm tài sản bảo đảm ngân hàng và khuyến nghị đối với Việt Nam

Phát triển các sản phẩm tài chính mới gắn với tín chỉ các-bon là chiến lược then chốt để thu hút dòng vốn tư nhân vào lĩnh vực giảm phát thải. Các sản phẩm như trái phiếu xanh được gắn với việc phát hành hoặc mua tín chỉ các-bon có thể tạo ra các dòng tiền ổn định và hấp dẫn cho nhà đầu tư bền vững (Asian Development Bank, 2019). Các khoản vay xanh thế chấp bằng tín chỉ các-bon cho phép doanh nghiệp tiếp cận vốn với chi phí thấp hơn nếu cam kết tạo ra lượng giảm phát thải xác thực. Việc đa dạng hóa các sản phẩm tài chính gắn với tín chỉ các-bon không chỉ tạo thêm động lực kinh tế cho các dự án xanh mà còn giúp thị trường các-bon phát triển theo hướng tích hợp sâu rộng với hệ sinh thái tài chính quốc gia.
Vị thế của đô la Mỹ trên thị trường tài chính toàn cầu

Vị thế của đô la Mỹ trên thị trường tài chính toàn cầu

Tháng 4/2025 chứng kiến cuộc khủng hoảng niềm tin nghiêm trọng đối với đồng USD, bất chấp lợi suất trái phiếu Mỹ tăng. Bài viết phân tích những bất thường trên thị trường tài chính toàn cầu sau các biện pháp thuế quan gây tranh cãi của Mỹ, đồng thời chỉ ra nguyên nhân từ sự thay đổi cấu trúc tài chính, phi toàn cầu hóa và biến động địa chính trị. Nếu xu hướng này tiếp diễn, USD có nguy cơ mất dần vị thế, đe dọa sự ổn định của hệ thống tài chính thế giới.
Kinh nghiệm quốc tế về áp dụng Hiệp ước vốn Basel III  trong hoạt động ngân hàng và khuyến nghị cho Việt Nam

Kinh nghiệm quốc tế về áp dụng Hiệp ước vốn Basel III trong hoạt động ngân hàng và khuyến nghị cho Việt Nam

Hiệp ước vốn Basel III là khuôn khổ nâng cao với sự sửa đổi và củng cố cả ba trụ cột của Basel II, đây là công cụ hỗ trợ đắc lực để nâng cao chất lượng quản trị rủi ro và năng lực cạnh tranh của các ngân hàng. Bài viết phân tích tình hình áp dụng các Hiệp ước vốn Basel của hệ thống ngân hàng trên thế giới, cùng với kinh nghiệm quốc tế và thực tiễn tại Việt Nam trong việc áp dụng Hiệp ước vốn Basel III, tác giả đưa ra một số đề xuất giải pháp chính sách cho hệ thống ngân hàng...
Hiểu biết tài chính và truyền tải chính sách tiền tệ: Kinh nghiệm từ Ngân hàng Trung ương châu Âu và một số khuyến nghị

Hiểu biết tài chính và truyền tải chính sách tiền tệ: Kinh nghiệm từ Ngân hàng Trung ương châu Âu và một số khuyến nghị

Bài viết phân tích vai trò của hiểu biết tài chính trong việc truyền dẫn chính sách tiền tệ, dựa trên khảo sát của Ngân hàng Trung ương châu Âu; đồng thời, đề xuất tăng cường giáo dục và truyền thông tài chính để hỗ trợ chính sách tiền tệ và phát triển kinh tế bền vững.
Giải mã bẫy thu nhập trung bình: Kinh nghiệm Đông Á và một số khuyến nghị chính sách

Giải mã bẫy thu nhập trung bình: Kinh nghiệm Đông Á và một số khuyến nghị chính sách

Bài viết này tổng hợp bài học từ các nền kinh tế đã thành công vượt qua "bẫy thu nhập trung bình" như Hàn Quốc, Singapore, Đài Loan (Trung Quốc), Malaysia và Trung Quốc. Trên cơ sở đó, tác giả nêu một số khuyến nghị chính sách đối với Việt Nam nhằm duy trì đà tăng trưởng, tránh rơi vào “bẫy” và hướng tới mục tiêu thu nhập cao vào năm 2045.
Kinh tế vĩ mô thế giới và trong nước các tháng đầu năm 2025: Rủi ro, thách thức và một số đề xuất, kiến nghị

Kinh tế vĩ mô thế giới và trong nước các tháng đầu năm 2025: Rủi ro, thách thức và một số đề xuất, kiến nghị

Việt Nam đã đặt mục tiêu tăng trưởng GDP năm 2025 đạt 8% trở lên, nhằm tạo nền tảng vững chắc cho giai đoạn tăng trưởng hai con số từ năm 2026. Đây là một mục tiêu đầy thách thức, khó khăn, đặc biệt trong bối cảnh kinh tế toàn cầu còn nhiều bất định và tăng trưởng khu vực đang có xu hướng chậm lại, cùng với việc Hoa Kỳ thực hiện áp thuế đối ứng với các đối tác thương mại, trong đó có Việt Nam. Mặc dù vậy, mục tiêu tăng trưởng kinh tế trên 8% năm 2025 vẫn có thể đạt được, với điều kiện phải có sự điều hành chính sách linh hoạt, đồng bộ và cải cách thể chế đủ mạnh để khơi thông các điểm nghẽn về đầu tư, năng suất và thị trường…

Thông tư số 14/2025/TT-NHNN quy định tỷ lệ an toàn vốn đối với ngân hàng thương mại, chi nhánh ngân hàng nước ngoài

Thông tư số 10/2025/TT-NHNN quy định về tổ chức lại, thu hồi Giấy phép và thanh lý tài sản của quỹ tín dụng nhân dân

Thông tư số 07/2025/TT-NHNN Sửa đổi, bổ sung một số điều của Thông tư số 39/2024/TT-NHNN ngày 01 tháng 7 năm 2024 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về kiểm soát đặc biệt đối với tổ chức tín dụng

Thông tư số 08/2025/TT-NHNN Sửa đổi, bổ sung một số điều của Thông tư số 43/2015/TT-NHNN ngày 31 tháng 12 năm 2015 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về tổ chức và hoạt động của phòng giao dịch bưu điện trực thuộc Ngân hàng thương mại cổ phần Bưu điện Liên Việt, Thông tư số 29/2024/TT-NHNN ngày 28 tháng 6 năm 2024 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về quỹ tín dụng nhân dân và Thông tư số 32/2024/TT-NHNN ngày 30 tháng 6 năm 2024 của Thống đốc Ngân hàng Nhà nướ

Nghị định số 94/2025/NĐ-CP ngày 29 tháng 4 năm 2025 của Chính phủ quy định về Cơ chế thử nghiệm có kiểm soát trong lĩnh vực ngân hàng

Nghị định số 26/2025/NĐ-CP của Chính phủ ngày 24/02/2025 quy định chức năng, nhiệm vụ, quyền hạn và cơ cấu tổ chức của Ngân hàng Nhà nước Việt Nam

Thông tư số 59/2024/TT-NHNN ngày 31/12/2024 Sửa đổi, bổ sung một số điều của Thông tư số 12/2021/TT-NHNN ngày 30 tháng 7 của 2021 của Thống đốc Ngân hàng Nhà nước Việt Nam quy định về việc tổ chức tín dụng, chi nhánh ngân hàng nước ngoài mua, bán kỳ phiếu, tín phiếu, chứng chỉ tiền gửi, trái phiếu do tổ chức tín dụng, chi nhánh ngân hàng nước ngoài khác phát hành trong nước

Thông tư số 60/2024/TT-NHNN ngày 31/12/2024 Quy định về dịch vụ ngân quỹ cho tổ chức tín dụng, chi nhánh ngân hàng nước ngoài

Thông tư số 61/2024/TT-NHNN ngày 31/12/2024 Quy định về bảo lãnh ngân hàng

Thông tư số 62/2024/TT-NHNN ngày 31/12/2024 Quy định điều kiện, hồ sơ, thủ tục chấp thuận việc tổ chức lại ngân hàng thương mại, tổ chức tín dụng phi ngân hàng