Neural Network, Deep Learning và các ứng dụng trong cuộc sống
20/09/2023 10.258 lượt xem
Trong thế giới công nghệ hiện nay, trí tuệ nhân tạo (AI) đã trở thành một phần không thể thiếu trong cuộc sống hằng ngày. Mạng thần kinh (Neural Network) là một phương thức trong lĩnh vực AI, được sử dụng để hỗ trợ máy tính xử lí dữ liệu theo cách lấy cảm hứng từ bộ não con người. Đây là một loại quy trình học sâu (Deep Learning), sử dụng các nút hoặc nơ-ron liên kết với nhau trong một cấu trúc phân lớp tương tự như bộ não con người. Phương thức này tạo ra một hệ thống thích ứng được máy tính sử dụng để học hỏi từ sai lầm của chúng và liên tục được cải thiện. Vì vậy, Neural Network nhân tạo hướng tới giải quyết các vấn đề phức tạp, chẳng hạn như tóm tắt tài liệu hoặc nhận diện khuôn mặt với độ chính xác cao hơn. Mặc dù một số người sử dụng Neural Network và Deep Learning thay thế cho nhau, nhưng những tiến bộ, tính năng và ứng dụng của chúng thực tế lại khác nhau. Bài viết phân tích về sự khác nhau giữa Neural Network và Deep Learning, từ đó đề cập đến những ứng dụng của chúng trong cuộc sống con người.
 
1. Khái niệm về Neural Network
 
Neural Network nhân tạo được mô phỏng theo bộ não con người. Nó phân tích dữ liệu phức tạp, hoàn thành các phép toán, tìm kiếm các mẫu và sử dụng thông tin thu thập được để đưa ra dự đoán và phân loại. Cũng giống như bộ não con người, Neural Network nhân tạo có một đơn vị chức năng cơ bản được gọi là nơ-ron. Những nơ-ron này còn được gọi là các nút, truyền thông tin trong mạng. (Hình 1)
 
Hình 1: Mô hình về Neural Network


Một Neural Network cơ bản có các nút được kết nối với nhau trong các lớp (layer) đầu vào (input layer), layer ẩn (hidden layer) và layer đầu ra (output layer). 
 
Layer đầu vào xử lí và phân tích thông tin trước khi gửi nó đến layer tiếp theo.
 
Layer ẩn nhận dữ liệu từ layer đầu vào hoặc các layer ẩn khác. Sau đó, layer ẩn tiếp tục xử lí và phân tích dữ liệu bằng cách áp dụng một tập hợp các phép toán để chuyển đổi và trích xuất những tính năng có liên quan từ dữ liệu đầu vào.
 
Layer đầu ra cung cấp thông tin cuối cùng bằng cách sử dụng các tính năng được trích xuất. Layer này có thể có một hoặc nhiều nút, tùy thuộc vào kiểu thu thập dữ liệu. Đối với phân loại nhị phân, đầu ra sẽ có một nút hiển thị kết quả 1 hoặc 0.
 
Hoạt động của Neural Network
 
Bộ não con người chính là nguồn cảm hứng cho kiến trúc Neural Network. Các tế bào não của con người được gọi là nơ-ron, tạo thành một mạng lưới phức tạp, có tính liên kết cao và gửi các tín hiệu đến nhau để giúp con người xử lí thông tin. Tương tự, một Neural Network nhân tạo được tạo ra từ các tế bào nơ-ron, cùng nhau phối hợp để giải quyết một vấn đề. Neural Network nhân tạo là các module phần mềm, được gọi là nút và Neural Network nhân tạo là các chương trình phần mềm hoặc thuật toán mà về cơ bản, sử dụng hệ thống máy tính để giải quyết các phép toán.
 
Một số loại mạng Neural Network nhân tạo
 
FeedForward Neural Network: Chủ yếu được sử dụng để nhận dạng khuôn mặt, truyền thông tin theo một hướng. Điều này có nghĩa là mọi nút trong một layer được liên kết với mọi nút trong layer tiếp theo, với thông tin truyền đi một chiều cho đến khi nó đến được nút đầu ra. Đây là một trong những loại Neural Network nhân tạo đơn giản nhất.
 
Recurrent Neural Network: Dạng Neural Network này hỗ trợ việc học lí thuyết. Recurrent Neural Network được sử dụng cho dữ liệu như ngôn ngữ tự nhiên và âm thanh. Chúng cũng được sử dụng cho các ứng dụng chuyển văn bản thành giọng nói cho Android và IOS. Không giống như các Feedforward Neural Network xử lí thông tin theo một hướng, Recurrent Neural Network sử dụng dữ liệu từ nơ-ron xử lí và gửi lại vào mạng.
 
Tùy chọn này rất quan trọng, nó có khả năng phản hồi lại khi hệ thống đưa ra các dự đoán sai. Recurrent Neural Network có thể cố gắng tìm ra lí do dẫn đến kết quả không chính xác và điều chỉnh cho phù hợp.
 
Convolutional Neural Network (CNN): Các Neural Network truyền thống đã được thiết kế để xử lí những đầu vào có kích thước cố định, nhưng các CNN có thể xử lí dữ liệu có kích thước khác nhau. CNN lí tưởng để phân loại dữ liệu trực quan như hình ảnh và video có độ phân giải và tỉ lệ khung hình khác nhau, rất hữu ích cho các ứng dụng nhận dạng hình ảnh.
 
Deconvolutional Neural Network: Neural Network này còn được gọi là Transposed Convolutional Neural Network và ngược lại với CNN.
 
Trong một CNN, hình ảnh đầu vào được xử lí thông qua các layer tích chập để trích xuất những tính năng quan trọng. Đầu ra này sau đó được xử lí thông qua một loạt các layer được kết nối, những layer này thực hiện phân loại - gắn tên hoặc nhãn cho hình ảnh đầu vào dựa trên những tính năng của nó. Điều này rất hữu ích cho việc nhận dạng đối tượng và phân đoạn hình ảnh.
 
Tuy nhiên, trong một Deconvolutional Neural Network, bản đồ đặc trưng trước đây là đầu ra sẽ trở thành đầu vào. Bản đồ đặc trưng này là một mảng giá trị ba chiều và không được gộp để tạo thành hình ảnh gốc với độ phân giải không gian tăng lên.
 
Modular Neural Network: Neural Network này kết hợp các module được kết nối với nhau, mỗi module thực hiện một nhiệm vụ phụ cụ thể. Mỗi module trong mạng module bao gồm một Neural Network được thiết kế sẵn để giải quyết một nhiệm vụ phụ như nhận dạng giọng nói hoặc dịch ngôn ngữ.
 
Modular Neural Network có thể thích ứng và hữu ích để xử lí đầu vào với nhiều dữ liệu rất khác nhau.
 
2. Deep Learning là gì?
 
Deep Learning là một thể loại nhỏ của học máy (Machine Learning), liên quan đến việc đào tạo các Neural Network nhân tạo để tự động học hỏi và phát triển một cách độc lập mà không cần được lập trình để làm như vậy.
 
Deep Learning có phải là AI không? Câu trả lời là có. Nó là động lực thúc đẩy nhiều ứng dụng AI và dịch vụ tự động hóa, giúp người dùng thực hiện các tác vụ mà ít cần sự can thiệp của con người. 
 
Có nhiều layer ẩn giữa layer đầu vào và đầu ra của Deep Learning. Điều này cho phép mạng thực hiện các hoạt động rất phức tạp và liên tục học hỏi khi dữ liệu đi qua các layer.
 
Deep Learning đã được áp dụng để nhận dạng hình ảnh, giọng nói, tổng hợp video và khám phá; ngoài ra, còn được áp dụng cho những sáng tạo phức tạp như ô tô tự lái, sử dụng thuật toán Deep Learning để xác định các chướng ngại vật và điều hướng xung quanh một cách hoàn hảo.
 
Người dùng phải cung cấp một lượng lớn dữ liệu được gắn nhãn vào mạng để huấn luyện mô hình Deep Learning. Trọng số và độ lệch của các nơ-ron trong mạng được điều chỉnh cho đến khi có thể dự đoán chính xác đầu ra cho dữ liệu đầu vào mới.

3. Sự khác biệt giữa Neural Network và Deep Learning

Neural Network và Deep Learning cùng là những tập hợp con của Machine Learning. Tuy nhiên, chúng khác nhau theo nhiều phương diện.
 
Layer: Neural Network nhân tạo thường được tạo thành từ layer đầu vào, layer ẩn và layer đầu ra. Trong khi đó, các mô hình Deep Learning bao gồm một số layer của Neural Network nhân tạo.
 
Phạm vi: Mặc dù các mô hình Deep Learning kết hợp Neural Network nhân tạo, nhưng chúng vẫn là những khái niệm riêng biệt. Các ứng dụng của Neural Network nhân tạo bao gồm nhận dạng mẫu, khuôn mặt, dịch máy và trình tự.
Trong khi đó, người dùng có thể sử dụng các mạng Deep Learning để quản lí quan hệ khách hàng, xử lí lời nói và ngôn ngữ, khôi phục hình ảnh... 
 
Trích xuất các tính năng: Neural Network nhân tạo yêu cầu sự can thiệp của con người, vì các kĩ sư phải xác định thứ bậc của những tính năng theo cách thủ công. Tuy nhiên, các mô hình Deep Learning có thể tự động xác định thứ bậc của các tính năng bằng cách sử dụng bộ dữ liệu được gắn nhãn và dữ liệu thô phi cấu trúc.
 
Hiệu suất: Neural Network nhân tạo mất ít thời gian hơn để đào tạo, nhưng có độ chính xác thấp hơn khi so sánh với Deep Learning (Deep Learning phức tạp hơn). Ngoài ra, các Neural Network cũng được biết là diễn giải các nhiệm vụ kém hơn mặc dù hoàn thành rất nhanh.
 
Tài nguyên tính toán: Deep Learning là một mạng lưới nơ-ron phức tạp có thể phân loại và giải thích dữ liệu thô với ít sự can thiệp của con người nhưng đòi hỏi nhiều tài nguyên tính toán hơn. Neural Network nhân tạo là một tập hợp con đơn giản hơn của Machine Learning, có thể được đào tạo bằng cách sử dụng các bộ dữ liệu nhỏ với ít tài nguyên tính toán hơn nhưng khả năng xử lí dữ liệu phức tạp bị hạn chế.
 
Mặc dù được sử dụng thay thế cho nhau nhưng Neural Network và Deep Learning vẫn là những khái niệm khác nhau. Chúng có các phương pháp đào tạo và mức độ chính xác khác nhau. Tuy nhiên, các mô hình Deep Learning tiên tiến hơn và tạo ra kết quả với độ chính xác cao hơn, có thể học tập độc lập mà ít có sự can thiệp của con người.
 
4. Một số ứng dụng của Neural Network và Deep Learning
 

ChatGPT và GPT-3  là một trong những ứng dụng của Neural Network và Deep Learning.
 
ChatGPT và GPT-3 đang là những chủ đề được tranh luận sôi nổi. Các phần mềm trò chuyện hỗ trợ của AI này đã được công bố là có thể đạt được cuộc trò chuyện chân thật giống con người và còn nhiều hơn thế.
 
Trong trường hợp người dùng chưa biết những Chatbot này vượt xa những Chatbot thông thường trong các tình huống hỗ trợ khách hàng, người sử dụng có thể yêu cầu GPT viết mã (Code), vẽ tranh hoặc suy đoán về một chủ đề nhất định, sau vài giây, Chatbot này đã sử dụng một lượng lớn thông tin để đưa ra câu trả lời phù hợp nhất.
 
ChatGPT: Đúng như tên gọi của nó, phần quan trọng trong tên của ChatGPT là “Chat”. Mô hình Machine Learning này được xây dựng với mục đích cụ thể là có thể trò chuyện tự nhiên, tương tự như con người. ChatGPT đã được phát triển với một bộ dữ liệu khổng lồ về dữ liệu hội thoại. Điều này có nghĩa là, mô hình đã được đào tạo với các phản ứng giống con người ngay từ đầu. Đó là một công cụ mạnh mẽ, nhưng phạm vi của nó bị hạn chế hơn.
 
Mục tiêu chính của ChatGPT là hỗ trợ bất cứ khi nào cần thực hiện các tác vụ ngôn ngữ. Chúng có thể bao gồm những cuộc trò chuyện với con người, dịch thuật, tạo văn bản và các nhiệm vụ văn học khác. 
 
GPT-3: GPT-3 là mô hình Machine Learning dựa trên Neural Network nhân tạo, có thể sử dụng dữ liệu Internet để tạo văn bản. Cả ChatGPT và GPT-3 đều được phát triển bằng cách sử dụng cùng một sơ đồ đào tạo. Nó là Neural Network nhân tạo lớn nhất từng được sản xuất tính đến thời điểm hiện tại.
 
GPT-3 không được thiết kế đặc biệt để trò chuyện với con người, mặc dù câu trả lời mà nó cung cấp nghe giống lời của con người. Nói một cách dễ hiểu, ChatGPT là một người hòa đồng nhưng không hiểu biết nhiều, trong khi GPT-3 là một cá nhân rất hiểu biết, đủ lịch sự nhưng không thích nói chuyện phiếm.
 
GPT-3 phù hợp hơn cho các nhiệm vụ đàm thoại và có thể đưa ra phản hồi theo ngữ cảnh cụ thể; điều mà ChatGPT không được đào tạo để thực hiện. Nó cũng nhanh chóng và hiệu quả hơn trong các nhiệm vụ đàm thoại.
 
GPT-3 là lựa chọn phù hợp khi cần làm một bài tiểu luận, cung cấp về lí thuyết hoặc bất kì thứ gì đòi hỏi một lượng lớn dữ liệu để phân tích, ngoại suy và đưa ra giải pháp bằng văn bản mạch lạc. Cả hai ứng dụng này đều có những ưu điểm riêng. Người dùng nên thử để biết chúng có thể làm những gì và khi nào nên sử dụng từng loại theo nhu cầu của mình.
 
5. Kết luận
 
Với sự phát triển của Neural Network nhân tạo và Deep Learning, khối lượng dữ liệu được thu thập của các Chatbot như ChatGPT, GPT-3 không ngừng tăng lên và các vấn đề về quyền riêng tư, việc sử dụng thông tin cá nhân rất đáng lo ngại. Vì điều khoản dịch vụ của công ty tạo ra ChatGPT, GPT-3 có quyền sử dụng tất cả dữ liệu đầu vào và đầu ra do người dùng và ChatGPT, GPT-3 cung cấp. Dù công ty này có hệ thống xóa tất cả các thông tin nhận dạng cá nhân khỏi dữ liệu mà mình sử dụng nhưng gần như không thể xác định và xóa “triệt để” thông tin cá nhân khỏi dữ liệu do chu kì cập nhật dữ liệu nhanh chóng của ChatGPT, GPT-3. Để bảo vệ dữ liệu cá nhân, người dùng cần nâng cao nhận thức trong cách sử dụng trên Internet.
 
Mặc dù ChatGPT, GPT-3 được xem như là bước tiến ngoạn mục khi có thể tổng hợp dữ liệu với tốc độ tính bằng phần trăm giây trong quá trình “con người hóa” giao tiếp với máy móc nhưng vẫn còn nhiều việc phải làm. Nó có thể thay thế con người trong việc tìm kiếm thông tin, viết báo cáo tổng hợp hay viết các văn bản dựa vào năng lực tổng hợp thông tin nhưng không đồng nghĩa với việc ChatGPT, GPT-3 có thể sẽ đưa ra các văn bản hay thông tin tốt nếu thông tin được yêu cầu nằm ngoài cơ sở dữ liệu được cung cấp. Vì thế, những yêu cầu mang tính đánh đố, thử sức của cộng đồng mạng trong thời gian gần đây sẽ dẫn đến những câu trả lời thiếu chính xác hoặc ngây ngô.
 
Câu trả lời của AI phụ thuộc dữ liệu đầu vào và nguồn thông tin có sẵn trong hệ thống máy tính nên ChatGPT, GPT-3 cũng không hoàn toàn chắc chắn về các thông tin trả lời của nó có đúng hay không khi gặp những câu hỏi khó hay mang tính riêng tư. Chính vì thế, với những thông tin được ChatGPT, GPT-3 cung cấp, người dùng Internet cần kiểm tra và xác định lại thông tin bằng các nguồn đáng tin cậy. AI có thể tự học, để sau đó nó trở nên tốt hơn, năm sau sẽ tốt hơn năm trước. Điều đó cũng cần người sử dụng luôn thận trọng với các cỗ máy, nhất là khi nó đang ngày càng thông minh hơn. Lúc đầu sử dụng người dùng sẽ thấy nó rất tuyệt vời, nhưng sau 10 lần, rồi 100 lần sử dụng, sẽ có lúc nó đưa ra kết quả sai. Nếu dữ liệu nạp vào không đúng, kết quả sẽ đưa ra sai - cũng giống như những thông tin giả mạo vẫn xuất hiện trên không gian mạng.
 
Công nghệ luôn có tính hai mặt và Neural Network và Deep Learning cũng vậy, nếu biết lựa chọn những ưu thế thì khả năng tổng hợp dữ liệu của những ứng dụng trí tuệ, ví dụ như ChatGPT, GPT-3 sẽ giúp công việc thống kê của con người dễ dàng hơn. Còn nếu không, công cụ này sẽ là thảm họa với con người. Cách sử dụng những công cụ như ChatGPT, GPT-3, sử dụng những tiện ích và mặt tích cực của Chatbot này phục vụ cho cuộc sống của con người, phù hợp với xu thế chuyển đổi số hiện nay. Cũng như bất kì công cụ sử dụng AI, trong tương lai ChatGPT, GPT-3 có thể sẽ được cải thiện tốt hơn nhưng điều quan trọng là cách sử dụng và tiếp nhận thông tin của người dùng Internet.
 
Nguyễn Công Minh
Trung tâm Viễn thông 4 - Viễn thông Hà Nội

Bình luận Ý kiến của bạn sẽ được kiểm duyệt trước khi đăng. Vui lòng gõ tiếng Việt có dấu
Đóng lại ok
Bình luận của bạn chờ kiểm duyệt từ Ban biên tập
Xây dựng nguồn lực con người nhằm phát triển văn hóa doanh nghiệp trong chuyển đổi số hoạt động ngân hàng
Xây dựng nguồn lực con người nhằm phát triển văn hóa doanh nghiệp trong chuyển đổi số hoạt động ngân hàng
01/03/2024 1.488 lượt xem
Kết quả nghiên cứu về phát triển văn hóa doanh nghiệp trong chuyển đổi số của các tổ chức nói chung và lĩnh vực ngân hàng nói riêng đều khẳng định, văn hóa doanh nghiệp có vai trò đặc biệt quan trọng, như là “quyền lực mềm” của tổ chức, giúp tổ chức phát triển bền vững.
Pháp luật về định danh khách hàng điện tử trong hoạt động ngân hàng tại Việt Nam
Pháp luật về định danh khách hàng điện tử trong hoạt động ngân hàng tại Việt Nam
14/02/2024 3.110 lượt xem
Trong quá trình hoạt động chuyển đổi số ngành Ngân hàng tại Việt Nam, định danh khách hàng điện tử hay còn gọi là eKYC (Electronic Know Your Customer) đang trở thành một xu hướng phát triển tất yếu. Công nghệ này cho phép các ngân hàng tại Việt Nam cung ứng dịch vụ số hóa, nâng cao trải nghiệm của khách hàng và tối ưu hóa hoạt động, đặc biệt trong hoạt động liên quan đến tài khoản thanh toán.
Chuyển đổi số ngành Ngân hàng - Tăng tốc và phát triển bền vững
Chuyển đổi số ngành Ngân hàng - Tăng tốc và phát triển bền vững
08/02/2024 3.278 lượt xem
Chuyển đổi số trong ngành Ngân hàng không chỉ là một xu hướng mà còn là một bước tiến quan trọng hướng tới tương lai tài chính hiện đại và linh hoạt.
Triển khai ứng dụng dữ liệu dân cư quốc gia góp phần đảm bảo an ninh, an toàn và thúc đẩy chuyển đổi số ngân hàng
Triển khai ứng dụng dữ liệu dân cư quốc gia góp phần đảm bảo an ninh, an toàn và thúc đẩy chuyển đổi số ngân hàng
01/02/2024 3.577 lượt xem
Trong bối cảnh phát triển sâu rộng của cuộc Cách mạng công nghiệp lần thứ tư (CMCN 4.0) trong mọi mặt đời sống kinh tế, xã hội, xu hướng chuyển dịch các giao dịch theo phương thức truyền thống sang môi trường điện tử gia tăng. Khách hàng được trải nghiệm đa dạng các dịch vụ tiện ích, hiện đại và tiết kiệm thời gian, chi phí.
Tăng cường đào tạo văn hóa số lĩnh vực ngân hàng theo mô hình ASK trong bối cảnh chuyển đổi số tại Việt Nam
Tăng cường đào tạo văn hóa số lĩnh vực ngân hàng theo mô hình ASK trong bối cảnh chuyển đổi số tại Việt Nam
29/01/2024 3.776 lượt xem
Trong quá trình chuyển đổi số, xây dựng văn hóa số giúp ngân hàng tạo ra nguồn nhân lực với tư duy đột phá sáng tạo, tạo ra các sáng kiến số đổi mới với khả năng thích ứng linh hoạt với thay đổi, từ đó đưa ngân hàng bước lên vị thế cao hơn trên thị trường.
Những điểm nhấn khoa học và công nghệ Việt Nam 2023
Những điểm nhấn khoa học và công nghệ Việt Nam 2023
25/01/2024 4.004 lượt xem
Năm qua, Việt Nam có sự bùng nổ và vươn lên mạnh mẽ trong lĩnh vực khoa học, công nghệ, nhiều nhà khoa học được vinh danh ở các giải thưởng, bảng xếp hạng lớn trên thế giới; Chỉ số Đổi mới sáng tạo toàn cầu tăng bậc; liên tục bùng nổ các ứng dụng phần mềm liên quan đến AI... Dưới đây là 10 sự kiện khoa học và công nghệ nổi bật trong năm 2023.
Thực trạng ứng dụng QR Code trong thanh toán ngân hàng
Thực trạng ứng dụng QR Code trong thanh toán ngân hàng
24/01/2024 3.899 lượt xem
Thanh toán không dùng tiền mặt (TTKDTM) và thanh toán điện tử ở Việt Nam đang ngày càng phát triển mạnh. Trong đó, phương thức thanh toán QR Code đang dần trở nên phổ biến và được nhiều người tiêu dùng sử dụng.
Một số xu hướng về an ninh mạng năm 2024
Một số xu hướng về an ninh mạng năm 2024
22/01/2024 4.295 lượt xem
Với việc công nghệ không ngừng phát triển nhanh chóng, năm 2024 là năm định hình để tiếp tục những đột phá có thể làm thay đổi cách sống, cách giao tiếp của con người.
Công nghệ ngân hàng năm 2023: Kết nối dữ liệu - Nâng tầm chuyển đổi số
Công nghệ ngân hàng năm 2023: Kết nối dữ liệu - Nâng tầm chuyển đổi số
18/01/2024 3.853 lượt xem
Năm 2023, ngành Ngân hàng tiếp tục gặt hái nhiều “trái ngọt” trong thúc đẩy thanh toán không dùng tiền mặt (TTKDTM) và chuyển đổi số, góp phần hướng đến Chính phủ số, xã hội số, kinh tế số với mục tiêu lấy người dân, doanh nghiệp là trung tâm. Năm 2023 còn là Năm Dữ liệu số quốc gia, ngân hàng cũng là một trong những ngành đi đầu trong phát triển ứng dụng dữ liệu về dân cư, định danh và xác thực điện tử phục vụ việc chuyển đổi số ngành Ngân hàng nói riêng, chuyển đổi số quốc gia nói chung.
Những thách thức trong việc đạt được các mục tiêu ESG và một số khuyến nghị cho các ngân hàng tại Việt Nam
Những thách thức trong việc đạt được các mục tiêu ESG và một số khuyến nghị cho các ngân hàng tại Việt Nam
12/01/2024 4.438 lượt xem
Các mục tiêu về môi trường, xã hội và quản trị (ESG) đã ngày càng đóng vai trò quan trọng đối với hoạt động của các ngân hàng. Bài viết phân tích một số thách thức chính đối với các ngân hàng Việt Nam trong việc đạt được các mục tiêu ESG gồm: (i) Cân bằng khả năng sinh lời và tính bền vững; (ii) Đo lường và báo cáo các chỉ số ESG; (iii) Thay đổi văn hóa tổ chức; (iv) Quản lí rủi ro danh tiếng.
Tác động của công nghệ nhập vai trong trải nghiệm khách hàng
Tác động của công nghệ nhập vai trong trải nghiệm khách hàng
15/12/2023 6.569 lượt xem
Sự xuất hiện của các công nghệ Thực tế ảo (Virtual Reality - VR), Thực tế tăng cường (Augmented Reality - AR) và Thực tế hỗn hợp (Mixed Reality - MR) đang định hình một môi trường mới, nơi các đối tượng thực và ảo được tích hợp ở nhiều cấp độ khác nhau.
Mobile-Money: Đạt mục tiêu tiếp cận khách hàng khu vực nông thôn, miền núi, vùng sâu, vùng xa, hải đảo
Mobile-Money: Đạt mục tiêu tiếp cận khách hàng khu vực nông thôn, miền núi, vùng sâu, vùng xa, hải đảo
13/12/2023 6.619 lượt xem
Tính đến cuối tháng 9/2023, tổng số tài khoản viễn thông thanh toán cho các hàng hóa, dịch vụ có giá trị nhỏ (Mobile-Money) được đăng kí và sử dụng là hơn 5,6 triệu tài khoản, trong đó số lượng khách hàng đăng kí và sử dụng dịch vụ ở nông thôn, miền núi, vùng sâu, vùng xa, biên giới và hải đảo chiếm khoảng 70%.
SupTech: Một số ứng dụng trong lĩnh vực tài chính
SupTech: Một số ứng dụng trong lĩnh vực tài chính
12/12/2023 6.736 lượt xem
Bài viết trình bày về công nghệ giám sát (Supervisory technology - SupTech) - một công cụ giúp các cơ quan giám sát nâng cao năng lực, chuyển đổi quy trình rườm rà thành quy trình công việc kĩ thuật số, trang bị cho giám sát viên công cụ phân tích và bảo vệ hệ thống tài chính, chống lại sự cố và khủng hoảng liên quan đến công nghệ tài chính (Fintech).
Ứng dụng trí tuệ nhân tạo và học máy trong hiệu quả hóa dịch vụ tài chính - ngân hàng
Ứng dụng trí tuệ nhân tạo và học máy trong hiệu quả hóa dịch vụ tài chính - ngân hàng
07/12/2023 7.348 lượt xem
Trí tuệ nhân tạo và học máy đã trở thành một xu hướng phổ biến trong việc thay đổi cách doanh nghiệp hoạt động ở nhiều ngành và lĩnh vực khác nhau.
Thiết kế tiền kĩ thuật số của ngân hàng trung ương và một số khuyến nghị đối với Việt Nam
Thiết kế tiền kĩ thuật số của ngân hàng trung ương và một số khuyến nghị đối với Việt Nam
15/11/2023 7.850 lượt xem
Bài viết tìm hiểu tiền kĩ thuật số của ngân hàng trung ương (Central Bank Digital Currency - CBDC) và các yếu tố kĩ thuật đặc biệt quan trọng cần được coi trọng trong quá trình thiết kế và triển khai CBDC.
Giá vàngXem chi tiết

GIÁ VÀNG - XEM THEO NGÀY

Khu vực

Mua vào

Bán ra

HÀ NỘI

Vàng SJC 1L

77.500

79.500

TP.HỒ CHÍ MINH

Vàng SJC 1L

77.500

79.500

Vàng SJC 5c

77.500

79.520

Vàng nhẫn 9999

63.750

64.950

Vàng nữ trang 9999

63.550

64.550


Ngoại tệXem chi tiết
TỶ GIÁ - XEM THEO NGÀY 
Ngân Hàng USD EUR GBP JPY
Mua vào Bán ra Mua vào Bán ra Mua vào Bán ra Mua vào Bán ra
Vietcombank 24,460 24,830 26,071 27,501 30,477 31,774 158.92 168.20
BIDV 24,515 24,825 26,260 27,480 30,602 31,755 159.98 168.42
VietinBank 24,419 24,839 26,295 27,490 30,875 31,885 160.54 168.49
Agribank 24,480 24,820 26,252 27,272 30,685 31,670 160.70 166.31
Eximbank 24,430 24,820 26,348 27,098 30,793 31,668 161.36 165.94
ACB 24,460 24,810 26,399 27,057 30,960 31,604 160.99 166.16
Sacombank 24,445 24,910 26,492 27,050 31,038 31,561 161.75 166.8
Techcombank 24,488 24,834 26,136 27,486 30,466 31,797 157.17 169.61
LPBank 24,240 25,180 26,277 27,616 30,936 31,879 159.36 170.83
DongA Bank 24,530 24,830 26,400 27,060 30,850 31,680 159.20 166.10
(Cập nhật trong ngày)
Lãi SuấtXem chi tiết
(Cập nhật trong ngày)
Ngân hàng
KKH
1 tuần
2 tuần
3 tuần
1 tháng
2 tháng
3 tháng
6 tháng
9 tháng
12 tháng
24 tháng
Vietcombank
0,10
0,20
0,20
-
1,70
1,70
2,00
3,00
3,00
4,70
4,70
BIDV
0,10
-
-
-
1,90
1,90
2,20
3,20
3,20
4,80
5,00
VietinBank
0,10
0,20
0,20
0,20
1,90
1,90
2,20
3,20
3,20
4,80
5,00
ACB
0,01
0,50
0,50
0,50
2,40
2,50
2,70
3,70
3,90
4,60
4,60
Sacombank
-
0,50
0,50
0,50
2,20
2,30
2,40
3,70
4,00
4,80
5,55
Techcombank
0,10
-
-
-
2,50
2,50
2,90
3,50
3,55
4,40
4,40
LPBank
0.20
0,20
0,20
0,20
1,80
1,80
2,10
3,20
3,20
5,00
5,30
DongA Bank
0,50
0,50
0,50
0,50
3,50
3,50
3,50
4,50
4,70
5,00
5,20
Agribank
0,20
-
-
-
1,70
1,70
2,00
3,00
3,00
4,80
4,90
Eximbank
0,50
0,50
0,50
0,50
3,00
3,20
3,40
4,20
4,30
4,80
5,10

Liên kết website
Bình chọn trực tuyến
Nội dung website có hữu ích với bạn không?